
Chapter 8

Hidden Markov models

By the end of this chapter, we will have presented
• Statistical ways of modeling dynamics
• Fundamentals of hidden Markov models
• Specialized computational algorithms

In this chapter we are exclusively concerned with modeling time dependent measurements. We revisit some of
the systems introduced in chapter 2 and present, in a unified framework, several methods to combine dynamic and
observation likelihoods. It will become apparent soon that computational tractability is by no means guaranteed
in time dependent problems and often we need to consider specialized algorithms that built upon or extend those
of chapter 5. For this reason, we also present appropriate computational methods that can be used to train
the resulting models in an e�cient manner. In this chapter, we focus on modeling discrete systems evolving in
discrete time; while, we present more general systems in the subsequent chapters.

8.1 Introduction

Throughout this chapter, we consider a system that may access a number of discrete states similar to the systems
seen in section 2.4. For convenience, throughout this chapter, we denote the constitutive states of the system
with ‡m, and use numerical labels m = 1 : M to distinguish between them. The number of di�erent states, M ,
that the system may occupy depends upon the problem at hand.

When such a system evolves in time, these fundamental questions arise: “what is the sequence of successive

states the system occupies across time?” and “what are the properties of the states occupied across time?”. To
help formulate our questions more precisely, we consider ordered time levels tn, indexed n = 1 : N , and use sn to
denote the state occupied by the system at tn. That is, for a given n, the passing state sn takes its value from
the constitutive states ‡1:M . Thus, our questions about the system at hand can be answered by estimating the
trajectory s1:N and the properties of each ‡m.

Note 8.1: Label and index conventions

Just as with the systems we encountered earlier in note 2.5, only the labeled states ‡m carry meaning while the
m labels themselves are otherwise only an arbitrary index. Such distinction does not carry over to the time level
indices, n. By convention, our time levels are ordered tn≠1 < tn indicating that, contrary to the m labels, our n

indices carry information.

A critical aspect of modeling time evolving systems is to recognize that states are not directly observed. Rather
only a version of them corrupted by measurement noise is typically assessed experimentally. Thus, whenever a
system occupies a state ‡m, it generates observations according to a probability distribution F‡m

, or its associated
density F‡m

(w), unique to ‡m.
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To derive a concise formulation incorporating measurement noise, we will assume the case where only one

observation, denoted by wn, is gathered per time level tn. In other words, our assessment rule reads

wn|sn ≥ Fsn
, (8.1)

with the understanding that each observation wn may consist of more than one scalar quantity, i.e., our individual
observations may be array-valued.

As we have seen in section 7.1.1, a more convenient way of representing eq. (8.1) is through a mother
distribution G„ with state specific parameters „‡m

. In this case, our assessment rules take the form

wn|sn, „ ≥ G„‡m
. (8.2)

Here, for convenience, we use „ to gather all emission parameters „‡1:M . Equation (8.1) or eq. (8.2) provide a
means to incorporate measurement and, unlike in chapter 7, the order in which observations are made provides
important information on dynamics including, say, the probability of transitioning to particular states ‡m at
subsequent time levels.

We have seen in chapter 2 that dynamics for systems with discrete state-spaces evolving in discrete time are
best described by assigning appropriate probability distributions on the passing states s1 and sn|sn≠1 dictating
the initialization and transition rules. Next, we discuss some modeling options to consider when selecting such
distributions.

8.2 The Hidden Markov Model

8.2.1 Modeling dynamics

From the modeling point of view, the simplest and often most convenient way to incorporate dynamics into an
observation model is to adopt transition probabilities between any pair ‡m and ‡mÕ of states in the system’s
state-space. That is, such formulations generally lead to intuitive and computationally tractable problems.

In general, our system’s transitions need not be reversible. As such, we may adopt di�erent probabilities for
transitions ‡m æ ‡mÕ and ‡mÕ æ ‡m. In the most general case, we denote with fi‡mæ‡

mÕ the probability of the
system starting at ‡m and, within one time step, transitioning to ‡mÕ . In this setup, some fi‡mæ‡

mÕ can be zero
indicating that the system cannot undergo transitions ‡m æ ‡mÕ in a single step.

To facilitate the presentation that follows, we gather all transition probabilities out of the same state ‡m

into an array fi‡m
= [fi‡mæ‡1 , fi‡mæ‡2 , · · · , fi‡mæ‡M

]. Since once the system departs from any ‡m, it neces-
sarily lands somewhere within the state-space ‡1:M , the individual transition probabilities assigned must satisfyq

M

m=1 fi‡mæ‡
mÕ = 1. Consequently, each fi‡m

is, in fact, a probability array.

Note 8.2: Transition probability matrix

To simplify the notation, we tabulate the transition probabilities into

‡1 ‡2 · · · ‡M

S

WU

T

XV

‡1 fi‡1æ‡1 fi‡1æ‡2 · · · fi‡1æ‡M

‡2 fi‡2æ‡1 fi‡2æ‡2 · · · fi‡2æ‡M

...
...

...
. . .

...
‡M fi‡M æ‡1 fi‡M æ‡2 · · · fi‡M æ‡M

=

S

WU

T

XV

fi‡1
fi‡2

...
fi‡M

= �.

This matrix is similar to the transition probability matrices we encountered in chapter 2.

Under this formulation, dynamics are represented generically by the transition rules

sn|sn≠1 ≥ Categorical
‡1:M

!
fisn≠1

"
. (8.3)
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Figure 8.1: Graphical representation of a HMM. Here, the parameters fl, � and „ are assumed known.

The system’s initial state s1 is not included in eq. (8.3) as there is no predecessor passing state. To complete our
formulation, we need to adopt separate probabilities for s1, which we denote with fl = [fl‡1 , fl‡2 , · · · , fl‡M

]. As
such, eq. (8.3) is combined with the initialization rule

s1 ≥ Categorical
‡1:M (fl) ,

thereby completing the description of the system’s dynamics.

Note 8.3: Deterministic initialization

When the initial state of our dynamical system is specified deterministically, we may still maintain the same
formulation by simply setting fl‡m

= 1 for the constitutive state ‡m from which the system is initialized and,
thus, fl‡

mÕ = 0 for every other state. For example, for a system initialized at ‡2, the initial probabilities are
fl = [0, 1, 0, · · · , 0].

8.2.2 Modeling overview

The statistical model we described so far is depicted graphically in fig. 8.1 and is summarized in

s1|fl ≥ Categorical
‡1:M (fl) , (8.4)

sn|sn≠1, � ≥ Categorical
‡1:M

!
fisn≠1

"
, n = 2 : N (8.5)

wn|sn, „ ≥ G„sn
, n = 1 : N (8.6)

where, for clarity, we emphasize the dependencies upon the parameters fl, �, „ by conditioning explicitly upon
them. The three equations model: initialization, transitions, and observations of the system under study, respec-
tively, and combined with a clear specification of the state-space ‡1:M , provide a complete description of our
problem.

The model just defined is termed the hidden Markov model (HMM). It contains two sets of parameters:
dynamical fl, � and observational „. From the inference point of view, the trajectory s1:N gathers latent (i.e.,
hidden) variables; w1:N gathers measurements; and, fl, �, „ gather parameters that, depending on context, may
either be known or unknown. The dependencies among variables are illustrated in fig. 8.1.

The HMM’s formulation in eqs. (8.4) to (8.6) is very general and, for this reason, is one of the mostly
widely used models in time series analysis. Since it is already formulated in generative form, when tackling direct
problems, it is straightforward to use this model for the simulation of synthetic measurements w1:N via ancestral
sampling, algorithm 1.3. However, as we will see shortly, the HMM is mostly useful in tackling inverse problems.
In particular, an inverse formulation of the HMM can be used to shed light on the following questions:

1. Given observations w1:N and parameter values fl, �, „ what is the likelihood of w1:N ?
2. Given observations w1:N and parameter values fl, �, „ what are the passing states s1:N ?
3. Given observations w1:N what are the values of the parameters fl, �, „?

These questions are commonly referred to as: evaluation, decoding, and estimation, respectively. To answer
them, we can follow two complementary routes: frequentist and Bayesian. We describe these separately in the
subsequent sections.
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Note 8.4: Time indexing and missing observations

With the indexing convention adopted, we designate with n = 1 the earliest time level associated with an obser-
vation and n = N with the latest one. Further, we assume that every intermediate time level n = 2, . . . , N ≠ 1
is also associated with an observation. This is a measurement-centric convention in the sense that the timing
schedule of the measurement acquisition protocol determines the precise structure of the hidden state sequence.

Occasionally we might encounter situations where we need to incorporate into our formulation time levels
without observations, for example when modeling measurements collected at irregular times. In such circumstances,
we may generalize our formulation in at least two possible ways:

1. Use the same indexing convention with precisely one observation per time level and adopt time dependent
kinetics, for example by explicitly requiring transition probabilities fin,‡mæ‡

mÕ that may change across time
levels.

2. Use an indexing scheme with redundant time levels. In particular, we may chose to maintain a hidden
state sequence at a finer, but regular, time spacing and associate only some of the passing states with the
observations while leaving the others unassociated with.

The theory we present next can readily accommodate both cases above with minor modification.

8.3 The Hidden Markov Model in the frequentist paradigm

The concepts of this section are direct extensions of chapter 2. As we have already introduced them, here we
treat mostly computational aspects specifically tailored to HMMs.

8.3.1 Evaluation of the likelihood

Evaluation of a HMM requires the computation of the (marginal) likelihood

p (w1:N |fl, �, „) =
ÿ

s1:N

p (w1:N , s1:N |fl, �, „)

with the sum taken over every possible state sequence s1:N . Naive evaluation of this enormous sum, where a
term p (w1:N , s1:N |fl, �, „) = p (w1:N |s1:N , „) p (s1:N |fl, �) is computed for each possible trajectory s1:N and
summed requires the evaluation and addition of M

N terms. This is prohibitively large even for small problems.
Instead, below, we describe a particular computational scheme, termed filtering , scaling as M

2
N .

Instead of completing over the entire state sequence s1:N , the computation of the likelihood is achieved most
e�ciently by completing first only with respect to the terminal passing state sN as follows

p (w1:N |fl, �, „) =
ÿ

sN

p (w1:N , sN |fl, �, „) =
ÿ

sN

AN (sN ) . (8.7)

This sum is readily computed so long as AN (sN ), called forward variables, are available for all possible values of
sN . Written explicitly these are AN (‡1), AN (‡2), . . . , AN (‡M ). We can define forward variables, more generally,
for any time level by the joint distributions

An(sn) = p(w1:n, sn|fl, �, „) (8.8)

and compute them recursively. Our recursion relies on

An(sn) = G„sn
(wn)

ÿ

sn≠1

fisn≠1æsn
An≠1(sn≠1), n = 2 : N (!8.9)

and requires the initial condition A1(s1) to iterate forward. As a direct consequence of the definition of A1(s1),
the initial condition is

A1(s1) = G„s1
(w1) fls1 . (!8.10)

The steps involved are summarized in algorithm 8.1.
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Algorithm 8.1: Forward recursion for the HMM (unstable version)

Given observations w1:N and parameters fl, �, „, the forward terms An(‡m), for each
time level n and each state ‡m, are computed as follows:
• At n = 1 initialize with

A1(‡m) = G„‡m
(w1)fl‡m

.

• For n = 2 : N compute recursively

An(‡m) = G„‡m
(wn)

Mÿ

mÕ=1

fi‡
mÕ æ‡m

An≠1(‡mÕ ).

Upon completion, the algorithm yields every An(‡m) which may be tabulated as follows

‡1 ‡2 · · · ‡M

S

WWWWWWWWWWWWWWWU

T

XXXXXXXXXXXXXXXV

t1 A1(‡1) A1(‡2) · · · A1(‡M ) A1(s1)

t2 A2(‡1) A2(‡2) · · · A2(‡M ) A2(s2)
...

...
...

. . .
...

...

tn An(‡1) An(‡2) · · · An(‡M ) An(sn)
...

...
...

. . .
...

...

tN AN (‡1) AN (‡2) · · · AN (‡M ) AN (sN )

Note 8.5: Vectorization

Gathering the forward terms of the same time level in row arrays

An =
#
An(‡1) An(‡2) · · · An(‡M )

$
,

and similarly for the likelihood terms

�n =
#
G„‡1 (wn) G„‡2 (wn) · · · G„‡M

(wn)
$

,

the filtering recursions can be executed in vectorized form

A1 = �n § fl,

An = �n § (An≠1�) , n = 2 : N

where § denotes the Hadamard (element-wise) product. If, instead of a row array, we represent �n as a diagonal
matrix D�n

, then the filtering recursions take a more conventional form

A1 = fl D�n
,

An = (An≠1�) D�n
, n = 2 : N

that only use ordinary matrix-vector operations. From these two sets of filtering equations, the first is preferred
for computational implementations while the second is more convenient in theoretical derivations.
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8.3.2 Decoding the state sequence

Decoding a HMM may be achieved in at least two meaningful ways. Depending on the problem specifics, we might
be interested in finding a single passing state s

ú

n
maximizing the marginal p(sn|w1:N , fl, �, „); or in finding the

sequence s
˘

1:N maximizing the joint p(s1:N |w1:N , fl, �, „). Generally, individual states s
ú

n
are useful in problems

where optimal passing states for a particular time level are sought. By contrast, s
˘

1:N is useful in problems where
the optimal trajectory over the entire time course is sought.

Note 8.6: Marginal and joint state sequences

Collecting passing states s
ú
n across all time levels, we may form a state sequence s

ú
1:N . This sequence, however,

must be used with caution as it might violate the kinetics in �. In particular, since s
ú
1:N considers each s

ú
n

irrespective of s
ú
n≠1; it may very well contain transitions s

ú
n≠1 æ s

ú
n coinciding with forbidden probabilities, i.e.,

fis
ú
n≠1æs

ú
n

= 0. By contrast, s
˘

1:N is guaranteed to obey the kinetics in � as any sequence containing prohibited
transitions fi

s
˘

n≠1æs
˘

n

is, as we will see, excluded by construction.

Marginal decoding

To obtain each s
ú

n
, termed marginal decoding, we need to compute p(sn|w1:N , fl, �, „). This can be e�ciently

achieved using the An(sn) variables through the relations

p(sN |w1:N , fl, �, „) Ã AN (sN ), (!8.11)
p(sn|w1:N , fl, �, „) Ã An(sn)Bn(sn), n = 1 : N ≠ 1 (!8.12)

where we define backward variables by

Bn(sn) = p (wn+1:N |sn, �, „) , n = 1 : N ≠ 1. (8.13)

In both eq. (!8.11) and eq. (!8.12), the missing proportionality constants do not a�ect the maximization of
p(sn|w1:N , fl, �, „) and, as such, need not be computed. Given An(sn) and Bn(sn), the sequence s

ú

1:N is readily
computed by

s
ú

n
= argmax

‡m

An(‡m)Bn(‡m).

The terms Bn(sn), similarly to An(sn), may be computed recursively. In this case, the recursion relies on

Bn(sn) =
ÿ

sn+1

Bn+1(sn+1)G„sn+1
(wn+1) fisnæsn+1 , n = 1 : N ≠ 1 (!8.14)

and requires the final condition BN (sN ) to iterate backward. By comparing eq. (!8.11) and eq. (!8.12), we fulfill
the terminal condition, conventionally, by setting

BN (sN ) = 1.

The steps involved are summarized in algorithm 8.2.
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Algorithm 8.2: Backward recursion for HMM (unstable version)

Given observations w1:N and parameters �, „, the backward terms Bn(‡m), for each time
level n and each state ‡m, are computed as follows:
• At n = N initialize by

BN (‡m) = 1.

• For n = N ≠ 1 : 1 compute recursively

Bn(‡m) =
Mÿ

mÕ=1

Bn+1(‡mÕ )G„‡
mÕ (wn+1) fi‡mæ‡

mÕ .

Upon completion, the algorithm yields every Bn(‡m) which may be tabulated as follows

‡1 ‡2 · · · ‡M

S

WWWWWWWWWWWWWWWU

T

XXXXXXXXXXXXXXXV

t1 B1(‡1) B1(‡2) · · · B1(‡M ) B1(s1)

t2 B2(‡1) B2(‡2) · · · B2(‡M ) B2(s2)
...

...
...

. . .
...

...

tn Bn(‡1) Bn(‡2) · · · Bn(‡M ) Bn(sn)
...

...
...

. . .
...

...

tN BN (‡1) BN (‡2) · · · BN (‡M ) BN (sN )

Joint decoding

The computation of s
˘

1:N , termed joint decoding, relies on the factorization

p(s1:N |w1:N , fl, �, „) = p(sN |w1:N , fl, �, „)
N≠1Ÿ

n=1
p(sn|sn+1:N , w1:N , fl, �, „)

which implies that the maximizer s
˘

1:N can be computed by the maximizers s
˘

n
of the individual factors p(sN |w1:N , fl, �, „)

and p(sn|s˘

n+1:N , w1:N , fl, �, „). Given An(sn), maximization of each factor can be simplified through the rela-
tions

p(sN |w1:N , fl, �, „) Ã AN (sN ), (8.15)
p(sn|sn+1:N , w1:N , fl, �, „) Ã An(sn)fisnæsn+1 , n = 1 : N ≠ 1. (!8.16)

The steps involved, known as Viterbi recursion, are summarized in algorithm 8.3.
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Algorithm 8.3: Viterbi recursion for HMM

Given observations w1:N , kinetic parameters �, and every An(‡m), the Viterbi sequence
s

˘

1:N is computed as follows:
• At n = N initialize by

s
˘

N
= argmax

‡m

AN (‡m).

• For n = N ≠ 1 : 1 compute recursively

s
˘

n = argmax
‡m

An(‡m)fi
‡mæs

˘

n+1
.

8.3.3 Estimation of the parameters

Estimation of a HMM seeks the maximizer of the likelihood

{flú
, �ú

, „ú} = argmax
fl,�,„

p (w1:N |fl, �, „) .

Completing the likelihood p (w1:N |fl, �, „) with the state sequence s1:N , for instance, as

p (w1:N |fl, �, „) =
ÿ

s1:N

p (s1:N , w1:N |fl, �, „)

we may perform this maximization with an EM procedure, where we iterate between an expectation (E) step and
a maximization (M) step, similar to section 3.2.2. The entire procedure, adapted to the HMM, is known as the
Baum-Welch algorithm and the steps involved are summarized in algorithm 8.4. In the next sections, we describe
the steps of algorithm 8.4 in detail.
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Algorithm 8.4: Baum-Welch algorithm

Given observations w1:N and an initial guess for the model parameters fl, �, „, the Baum-
Welch algorithm computes successively improved approximations of the maximizer of
p (w1:N |fl, �, „) by repeating the following steps

• E-step:
– Use fl, �, „ to compute An(‡m) and Bn(‡m).
– Use An(‡m) and Bn(‡m) to compute

’n(‡m) = An(‡m)Bn(‡m),
÷n(‡m, ‡mÕ ) = An≠1(‡m)Bn(‡mÕ )G

!
wn; „‡

mÕ

"
fi‡mæ‡

mÕ .

– Use ÷n(‡m, ‡mÕ ) to compute

›‡m
(‡mÕ ) =

Nÿ

n=2

÷n(‡m, ‡mÕ ).

• M-step:
– Update fl by replacing with

3
’1(‡1)q

‡m
’1(‡m) , · · · ,

’1(‡M )q
‡m

’1(‡m)

4
.

– Update � by replacing each fi‡m
with

A
›‡m

(‡1)q
‡

mÕ
›‡m

(‡mÕ ) , · · · ,
›‡m

(‡M )q
‡

mÕ
›‡m

(‡mÕ )

B
.

– Update „ by replacing each „‡m
with the maximizer of

Nÿ

n=1

’n(‡m) log G„‡m
(wn) .

The iterations are terminated either after a fixed number of repetitions or when the
improvement between successive approximations of fl, �, „ falls below a predetermined
threshold.

Like any EM method, convergence of algorithm 8.4 to the global optimizer flú
, �ú

, „ú is not guaranteed.
In practice, we need to try multiple initial guesses spanning a wide region of parameter space and, at the end,
select the best optimizer found according to, say, the numerical value for the likelihood, p (w1:N |flú

, �ú
, „ú). As

algorithm 8.4 does not provide the value of p (w1:N |flú
, �ú

, „ú) to compare the resulting maximizers, we need to
compute it separately through, for example, eq. (8.7).

Expectation step�

In the E-step, we start from an initial approximation flold
, �old

, „old of the maximizer flú
, �ú

, „ú we wish to
obtain and compute the expectation function that we will later maximize in the M-step. Specifically, we compute
the expectation of

log p (s1:N , w1:N |fl, �, „) = log fls1 +
Nÿ

n=2
log fisn≠1æsn

+
Nÿ

n=1
log G„sn

(wn) (!8.17)

�This is an advanced topic and could be skipped on a first reading.
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with respect to the probability distribution of s1:N |w1:N , flold
, �old

, „old. Since this expectation is a function
of fl, �, „ and also depends on flold

, �old
, „old, we denote it with Qflold,�old,„old(fl, �, „). In particular, this

expectation is given by

Qflold,�old,„old(fl, �, „) =
ÿ

s1

p

1
s1|w1:N , flold

, �old
, „old

2
log fls1

+
ÿ

sn≠1

Nÿ

n=2

ÿ

sn

p

1
sn≠1, sn|w1:N , flold

, �old
, „old

2
log fisn≠1æsn

+
ÿ

sn

Nÿ

n=1
p

1
sn|w1:N , flold

, �old
, „old

2
log G„sn

(wn) . (!8.18)

The distributions over sn|w1:N , flold
, �old

, „old and sn≠1, sn|w1:N , flold
, �old

, „old can be computed in terms of
the forward and backward terms of eqs. (8.8) and (8.13). As these are computed using on flold

, �old
, „old, we

use the associated Aold
n

(sn) and Bold
n

(sn). These distributions are

p

1
sn|w1:N , flold

, �old
, „old

2
= Aold

n
(sn)Bold

n
(sn)

p

1
w1:N |flold, �old

, „old
2 , (!8.19)

p

1
sn≠1, sn|w1:N , flold

, �old
, „old

2
=

Aold
n≠1(sn≠1)Bold

n
(sn)G„old

sn

(wn) fi
old
sn≠1æsn

p

1
w1:N |flold, �old

, „old
2 . (!8.20)

Finally, because p

1
w1:N |flold

, �old
, „old

2
does not depend upon fl, �, „, this term does not a�ect the maxi-

mization of Qflold,�old,„old(fl, �, „) with respect to fl, �, „. As such, we can safely drop it to obtain

Qflold,�old,„old(fl, �, „) Ã
Mÿ

m=1
’

old
1 (‡m) log fl‡m

+
Mÿ

m=1

Nÿ

n=2

Mÿ

mÕ=1
÷

old
n

(‡m, ‡mÕ) log fi‡mæ‡
mÕ

+
Mÿ

m=1

Nÿ

n=1
’

old
n

(‡m) log G„‡m
(wn) (8.21)

where

’
old
n

(‡m) = Aold
n

(‡m)Bold
n

(‡m), n = 1 : N (8.22)
÷

old
n

(‡m, ‡mÕ) = Aold
n≠1(‡m)Bold

n
(‡mÕ)G„old

‡
mÕ

(wn) fi
old
‡mæ‡

mÕ , n = 2 : N. (8.23)

Maximization step�

In the M-step, we obtain an improved approximation flnew
, �new

, „new of the maximizer sought by maximizing
the expectation function obtained in the E-step. Specifically, we maximize Qflold,�old,„old(fl, �, „) under the
constraints

Mÿ

m=1
fl‡m

= 1,

Mÿ

mÕ=1
fi‡mæ‡Õ

m
= 1.

�This is an advanced topic and could be skipped on a first reading.
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needed to ensure that flnew
, �new consists of valid probability vectors. As our objective function in eq. (8.21) is

separable, the computation of the new maximizer can be broken down into separate maximizations

flnew = argmax
fl

Mÿ

m=1
’

old
1 (‡m) log fl‡m

,

finew
‡m

= argmax
fi‡m

Nÿ

n=2

Mÿ

mÕ=1
÷

old
n

(‡m, ‡mÕ) log fi‡mæ‡
mÕ ,

„
new
‡m

= argmax
„‡m

Nÿ

n=1
’

old
n

(‡m) log G„‡m
(wn) .

Maximization for initial probabilities The first optimization entails one constraint, which we can solve by
using a single Lagrange multiplier ⁄ under the Lagrangian

L (⁄, fl‡1 , . . . , fl‡M
) =

A
1 ≠

Mÿ

m=1
fl‡m

B
⁄ +

Mÿ

m=1
’

old
1 (‡m) log fl‡m

.

Accordingly, the optimizer solves
ˆL (⁄, fl‡1 , . . . , fl‡M

)
ˆ⁄

= 0,
ˆL (⁄, fl‡1 , . . . , fl‡M

)
ˆfl‡m

= 0.

This system can be solved analytically. The solution, which provides the improved value flnew of the optimizer
flú, is

flnew =
A

’
old
1 (‡1)

q
M

m=1 ’
old
1 (‡m)

, · · · ,
’

old
1 (‡M )

q
M

m=1 ’
old
1 (‡m)

B
. (!8.24)

Maximization for transition probabilities For each m, the second optimization also entails one constraint,
that we can solve using a single Lagrange multiplier Ÿm under the Langrangian

Km (Ÿm, fi‡mæ‡1 , . . . , fi‡mæ‡M
) =

A
1 ≠

Mÿ

mÕ=1
fi‡mæ‡

mÕ

B
Ÿm +

Nÿ

n=2

Mÿ

mÕ=1
÷

old
n

(‡m, ‡mÕ) log fi‡mæ‡
mÕ .

Accordingly, the optimizer solves
ˆKm (Ÿm, fi‡mæ‡1 , . . . , fi‡mæ‡M

)
ˆŸm

= 0,
ˆKm (Ÿm, fi‡mæ‡1 , . . . , fi‡mæ‡M

)
ˆfi‡mæ‡

mÕ
= 0.

Again, this system can be solved analytically. The solution, which provides the improved value finew
‡m

of the
optimizer fiú

‡m
, is

finew
‡m

=
A

›
old
‡m

(‡1)
q

M

mÕ=1 ›old
‡m

(‡mÕ)
, · · · ,

›
old
‡m

(‡M )
q

M

mÕ=1 ›old
‡m

(‡mÕ)

B
(!8.25)

where

›
old
‡m

(‡mÕ) =
Nÿ

n=2
÷

old
n

(‡m, ‡mÕ).

Maximization for emission parameters Unlike the first two optimizations, the third one generally cannot be
solved analytically. Instead, depending on the functional form of the density G„(w), numerical techniques are
needed to compute improved values „

new
‡m

of the optimizers „
ú

‡m
. In example 8.1 below, we illustrate a simpler

case where numerical optimization is unnecessary.
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Example 8.1: Estimation in a HMM with Normal observations

We consider a HMM with state-space ‡1:M and Normal emissions

Gµ‡m
,v‡m

(w) = Normal (w; µ‡m
, v‡m

)

where the state parameters are „‡m
= (µ‡m

, v‡m
). Further, we suppose that an approximation flold

, �old
, „old of

the maximizer flú
, �ú

, „ú has already been computed and we seek an improved one flnew
, �new

, „new using the
Baum-Welch algorithm.

Due to the exponential form of Gµ‡m
,v‡m

(w), we can derive a maximization procedure for the emission
parameters analytically. That is, for each ‡m, the improved emission parameters µ

new
‡m

, v
new
‡m

maximize

Nÿ

n=1

’
old
n (‡m) log Gµ‡m

,v‡m
(wn) Ã

Nÿ

n=1

’
old
n (‡m)

3
≠ log v‡m

≠ (wn ≠ µ‡m
)2

v‡m

4
.

Since the maximizers are obtained by maximizing the above, they are found by solving

ˆ

ˆµ‡m

Nÿ

n=1

’
old
n (‡m)

3
≠ log v‡m

≠ (wn ≠ µ‡m
)2

v‡m

4
= 0,

ˆ

ˆv‡m

Nÿ

n=1

’
old
n (‡m)

3
≠ log v‡m

≠ (wn ≠ µ‡m
)2

v‡m

4
= 0.

The solution is

µ
new
‡m

=
q

N

n=1 ’
old
n (‡m)wnq

N

n=1 ’
old
n (‡m)

, v
new
‡m

=
q

N

n=1 ’
old
n (‡m) (wn ≠ µ

new
‡m

)2

q
N

n=1 ’
old
n (‡m)

.

8.3.4 Some computational considerations

As we have seen already, the forward An(sn) and backward Bn(sn) variables are central to nearly every algorithm
we have encountered so far and their accurate evaluation is essential in a HMM. Unfortunately, the computations
in algorithms 8.1 and 8.2, which rely on the recursions of eqs. (!8.9) and (!8.14), involve a large number of
multiplications between small numbers. Consequently, these algorithms are of limited practical value as most
often they lead to rapid underflow and erroneous results.

Underflow is prevented if we consider normalized forward and backward terms

Ân(sn) = An(sn) 1
p(w1:n|fl, �, „) , (8.26)

B̌n(sn) = Bn(sn) 1
p (wn+1:N |w1:n, fl, �, „) (8.27)

and perform the recursions for Ân(sn) and B̌n(sn) instead of An(sn) and Bn(sn). In these cases, the recursions
needed rely on

Â1(s1) = 1
Ĉ1

G„s1
(w1) fls1 ,

Ân(sn) = 1
Ĉn

G„sn
(wn)

ÿ

sn≠1

fisn≠1æsn
Ân≠1(sn≠1), n = 2 : N (!8.28)

B̌n(sn) = 1
Ĉn+1

ÿ

sn+1

B̌n+1(sn+1)G„sn+1
(wn+1) fisnæsn+1 , n = 1 : N ≠ 1 (!8.29)

B̌N (sN ) = 1
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with the constants Ĉn given by

Ĉ1 = p(w1|fl, „),
Ĉn = p(wn|w1:n≠1, fl, �, „), n = 2 : N.

As the normalized terms Ân(‡1), · · · , Ân(‡M ) are valid probabilities themselves, they are already scaled self-
consistently and underflow is avoided. Further, because

q
M

m=1 Ân(‡m) = 1, the constants Ĉn, can be easily
computed during the forward recursion. The steps involved in both recursions are summarized in algorithms 8.5
and 8.6.

Algorithm 8.5: Forward recursion for HMM (stable version)

Given observations w1:N and parameters fl, �, „ the forward terms Ân(‡m), for each time
level n and each state ‡m, are computed as follows:
• At n = 1 initialize by

ÂÕ
1(‡m) = G„‡m

(w1)fl‡m
,

Ĉ1 =
Mÿ

m=1

ÂÕ
n(‡m),

Ân(‡m) = 1
Ĉ1

ÂÕ
n(‡m).

• For n = 2, . . . , N compute recursively

ÂÕ
n(‡m) = G„‡m

(wn)
Mÿ

mÕ=1

fi‡
mÕ æ‡m

Ân≠1(‡mÕ ),

Ĉn =
Mÿ

m=1

ÂÕ
n(‡m),

Ân(‡m) = 1
Ĉn

ÂÕ
n(‡m).

Upon completion, the algorithm provides every Ân(‡m) and Ĉn which may be tabulated
as follows

‡1 ‡2 · · · ‡MS

WWWWWWWU

T

XXXXXXXV

S

WWWWWWWU

T

XXXXXXXV

t1 Â1(‡1) Â1(‡2) · · · Â1(‡M ) Ĉ1
t2 Â2(‡1) Â2(‡2) · · · Â2(‡M ) Ĉ2
...

...
...

. . .
...

...
tn Ân(‡1) Ân(‡2) · · · Ân(‡M ) Ĉn

...
...

...
. . .

...
...

tN ÂN (‡1) ÂN (‡2) · · · ÂN (‡M ) ĈN

.
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Algorithm 8.6: Backward recursion for HMM (stable version)

Given observations w1:N , parameters �, „ and Ĉ2:N , the backward terms Bn(‡m), for
each time level n and each state ‡m, are computed as follows:
• At n = N initialize by

B̌N (‡m) = 1.

• For n = N ≠ 1, . . . , 1 compute recursively

B̌n(‡m) = 1
Ĉn+1

Mÿ

mÕ=1

B̌n+1(‡mÕ )G„‡
mÕ (wn+1) fi‡mæ‡

mÕ .

Upon completion, the algorithm provides every B̌n(‡m) which may be tabulated as follows

‡1 ‡2 · · · ‡MS

WWWWWWWU

T

XXXXXXXV

t1 B̌1(‡1) B̌1(‡2) · · · B̌1(‡M ))
t2 B̌2(‡1) B̌2(‡2) · · · B̌2(‡M )
...

...
...

. . .
...

tn B̌n(‡1) B̌n(‡2) · · · B̌n(‡M )
...

...
...

. . .
...

tN B̌N (‡1) B̌N (‡2) · · · B̌N (‡M )

.

As we can see, algorithms 8.5 and 8.6 involve more computations than algorithms 8.1 and 8.2. Nevertheless,
this di�erence is almost negligible as the most expensive operation in both versions is a matrix-vector multiplication,
appearing in eq. (!8.28) and eq. (!8.29), which scales with M

2
N . In any case, although less e�cient than An(sn)

and Bn(sn), computing Ân(sn) and B̌n(sn) avoids underflow which is an indispensable.
Furthermore, on account of eqs. (8.26) and (8.27), the normalized terms Ân(sn) and B̌n(sn) can be used al-

most anywhere both An(sn) and Bn(sn) are required. For example, both ways of decoding a HMM, e.g. eqs. (!8.11)
and (!8.12) or eqs. (8.15) and (!8.16), are una�ected by the normalization. Similarly, the maximization of
eq. (8.21) for estimating a HMM, e.g., eqs. (8.22) and (8.23), remains similarly una�ected.

However, an important exception occurs when evaluating a HMM. In particular, because eq. (8.7) depends
explicitly upon AN (sN ), the normalization does have an e�ect and the marginal likelihood p(w1:N |fl, �, „) needs
to be evaluated di�erently. The most convenient way is through the factorization

p(w1:N |fl, �, „) =
NŸ

n=1
Ĉn (!8.30)

with the constants Ĉn computed, most e�ciently, with the forward recursion of algorithm 8.5 and stored in
logarithm form.

8.3.5 State-space labeling and likelihood�

The algorithms presented so far are routinely used to answer questions pertaining to a HMM. These algorithms
exhibit maximum e�ciency for their tasks. However, they are limited to yielding point estimates only. That is, at
best, these algorithms provide a single choice for the values of the variables of interest, for example s

ú

n
, s

˘

1:N or
flú

, �ú
, „ú. Unfortunately, they fail to quantify the uncertainty associated with each estimator, which is a serious

limitation by itself.
�This is an advanced topic and could be skipped on a first reading.
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Error bars around the estimators may be obtained with generic likelihood-based strategies, for example through
Fisher information or bootstrapping techniques that we do not dwell upon here. Indeed, such approaches are
possible, at least in theory, under Monte Carlo sampling or greedy computations where a portion of all possible
sequences s1:N are computed. However, even with greedy computations, there is a fundamental degeneracy in
likelihoods constructed from eqs. (8.4) to (8.6) prohibiting the uniqueness of any computed estimator.

Namely, similar to what we saw in section 7.1.3, HMM likelihoods, p(w1:N |fl, �, „) or p(w1:N , s1:N |fl, �, „),
are invariant to permutations of the constitutive state labels. That is, relabeling of the constitutive states results
in the same value of the likelihood. Consequently, irrespective of how an estimator is obtained, there are always
additional M ! ≠ 1 equally optimal ones leading to M !-fold degeneracy.

Example 8.2: State relabeling

To illustrate the likelihood’s degeneracy, we consider a simplified HMM containing N = 3 time levels and M = 2
constitutive states. Further, for clarity, we adopt pedantic notation and let s1:3, fl, �, „ stand for the corresponding
random variables. Considering realized values for these random variables, invariance of the (marginal) likelihood
reads

p

3
w1:3

----fl = (fl–, fl—), � =
3

fi–æ– fi–æ—

fi—æ– fi—æ—

4
, „ = („–, „—)

4

= p

3
w1:3

----fl = (fl— , fl–), � =
3

fi—æ— fi—æ–

fi–æ— fi–æ–

4
, „ = („— , „–)

4
.

Similarly, invariance of the (joint) likelihood reads

p

3
w1:3, s1:3 = (–, —, —)

----fl = (fl–, fl—), � =
3

fi–æ– fi–æ—

fi—æ– fi—æ—

4
, „ = („–, „—)

4

= p

3
w1:3, s1:3 = (—, –, –)

----fl = (fl— , fl–), � =
3

fi—æ— fi—æ–

fi–æ— fi–æ–

4
, „ = („— , „–)

4
.

Both cases are produced by considering every possible permutation of the constitutive states which, for this simple
example, are

‡1 ‡21 2
– —

— –
.

8.4 The Hidden Markov Model in the Bayesian paradigm

A Bayesian formulation provides more modeling flexibility than its frequentist counterpart. Such flexibility is quite
useful when modeling dynamical systems. For example, it provides a recipe by which to rigorously back-propagate
measurement error into uncertainty over the parameters we seek or even characterize state-spaces in themselves
as we will discover later in the context of HMMs within the Bayesian nonparametric paradigm.

In the Bayesian setting, we sample posteriors. Therefore, every question about a system formulated with a
Bayesian HMM is answered through the posterior p(fl, �, „|w1:N ) or the completed posterior p(s1:N , fl, �, „|w1:N ).
The HMM of eqs. (8.4) to (8.6) provides probability distributions only for the passing states p(s1:N |fl, �) and the
measurements p(w1:N |s1:N , „) which do not su�ce in fully specifying our posterior. For this reason, a Bayesian
HMM requires the specification of additional distributions that supply statistics to the parameters fl, �, „. These
distributions are our priors and, as anticipated, several reasonable choices can be devised to accommodate a sys-
tem at hand. Below, we describe suitable choices and subsequently appropriate sampling techniques for a generic
Bayesian HMM. We present more specialized versions, tailored to specific cases, in subsequent sections.
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Figure 8.2: Graphical representation of a Bayesian HMM. Here, the parameters fl, � and „ are assumed unknown.

8.4.1 Priors for the HMM

The simplest choice for the initial fl‡m
and transition fi‡mæ‡

mÕ probabilities are o�ered by independent priors on
fl and each fi‡m

. For instance, draws from Dirichlet distributions

fl ≥ Dirichlet‡1:M (÷’) ,

fi‡m
≥ Dirichlet‡1:M

!
–‡m

—
‡m

"
,

ensure valid probability arrays. In these priors, ÷ and –‡m
are positive scalar constants; while, ’ = [’‡1 , · · · , ’‡M

]
and —

‡m
= [—‡mæ‡1 , · · · , —‡mæ‡1 ] are probability arrays. Due to the conjugacy between the Categorical and

Dirichlet distributions, as we see shortly, such prior choices are also computationally favored.
Despite the generality in the priors over the dynamical parameters, a choice for the emission parameters „‡m

depends heavily on the distribution G„ which, in turn, vary widely between systems. Computational tractability
is facilitated when we consider iid priors

„‡m
≥ H,

under a common, system specific, probability distribution H. Additionally, we see below that the computations
involved are greatly simplified if H is conjugate to G„.

8.4.2 MCMC inference in the Bayesian HMM

With the choices described above, an entire Bayesian HMM forward model is summarized as

fl ≥ Dirichlet‡1:M (÷’) , (8.31)
fi‡m

≥ Dirichlet‡1:M

!
–‡m

—
‡m

"
, (8.32)

„‡m
≥ H, (8.33)

s1|fl ≥ Categorical
‡1:M (fl) , (8.34)

sn|sn≠1, � ≥ Categorical
‡1:M (fi‡m

) , n = 2 : N (8.35)
wn|sn, „ ≥ G„sn

, n = 1 : N (8.36)

and illustrated in fig. 8.2. Inference on this HMM is more complicated than its non-Bayesian counterpart. Below,
we describe two complementary MCMC sampling schemes. One is based on the Gibbs sampler, appropriate for rou-
tine applications, and another based on the Metropolis-Hastings sampler, appropriate for demanding applications
where mixing of the Gibbs sampler becomes ine�cient.

Gibbs sampling

A Gibbs sampling scheme is most e�cient when it generates MCMC samples from the HMM’s completed posterior
p (s1:N , fl, �, „|w1:N ). In a basic implementation, we iterate between successive updates of s1:N |fl, �, „, w1:N
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and fl, �, „|s1:N , w1:N . Due to the formulation of the HMM, the latter reduces to independent updates for each
parameter. Specifically, once s1:N |fl, �, „, w1:N is sampled, we can update the parameters by sampling separately
fl|s1 and fi‡m

|s1:N and „‡m
|s1:N , w1:N for each ‡m. The entire scheme is summarized in algorithm 8.7.

Algorithm 8.7: Gibbs sampling for Bayesian HMM

Given an initial sample flold
, �old

, „old, which may be generated from the corresponding
priors, MCMC updates are carried out by iterating the following steps:

• Update the state sequence by sampling s
new
1:N with forward filtering backward sam-

pling based on flold
, �old

, „old.
• Compute state indices N‡m

and counts d, C based on s
new
1:N as described shortly.

• Update the dynamic parameters by sampling from

flnew ≥ DirichletM (÷’ + dnew) ,

finew
‡m

≥ DirichletM

!
–‡m

—
‡m

+ cnew
‡m

"
.

• Update the emission parameters by sampling „
new
‡m

for each ‡m based on N new
‡m

.

Below, we examine the steps involved in this Gibbs scheme in more detail. For clarity, we designate with
flold

, �old
, „old a sample in the MCMC chain and with s

new
1:N , flnew

, �new
, „new the very next sample.

Updates of the state sequence In the Gibbs sampler, the state sequence is updated by sampling from
p(s1:N |flold

, �old
, „old

, w1:N ). This distribution is factorized as

p(s1:N |flold
, �old

, „old
, w1:N ) = p(sN |flold

, �old
, „old

, w1:N )
N≠1Ÿ

n=1
p(sn|sn+1:N , flold

, �old
, „old

, w1:N )

which allows s
new
N

to be sampled first and subsequently each s
new
n

to be sampled recursively backwards. We can
perform such sampling using the forward terms Ân(‡m) which need to be precomputed through filtering, for
example, via algorithm 8.5. As these terms need to be computed under flold

, �old
, „old we designate them with

Âold
n

(‡m). Once every Âold
n

(‡m) is computed with a forward recursion, sampling begins with

s
new
N

≥ Categorical
‡1:M

1
Âold

N
(‡1), · · · , Âold

N
(‡M )

2
(8.37)

and recurses backward based on

s
new
n

≥ Categorical
‡1:M

Q

a
Âold

n
(‡1)fiold

‡1æs
new
n+1q

M

m=1 Âold
n

(‡m)fiold
‡mæs

new
n+1

, · · · ,

Âold
n

(‡M )fiold
‡M æs

new
n+1q

M

m=1 Âold
n

(‡m)fiold
‡mæs

new
n+1

R

b . (!8.38)

The entire processes is termed forward filtering backward sampling and the steps involved are summarized in al-
gorithm 8.8.
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Algorithm 8.8: Forward filtering backward sampling

Given observations w1:N and parameters fl, �, „, a state sequence s1:N is sampled as
follows:
• Use algorithm 8.5 and fl, �, „ to compute the forward terms Ân(‡m).
• At n = N generate

sN ≥ Categorical
‡1:M

!
ÂN (‡1), · · · , ÂN (‡M )

"
.

• For n = N ≠ 1 : 1 generate recursively

sn ≥

Categorical
‡1:M

A
Ân(‡1)fi‡1æsn+1q

M

m=1 Ân(‡m)fi‡mæsn+1

, · · · ,
Ân(‡M )fi‡M æsn+1q

M

m=1 Ân(‡m)fi‡mæsn+1

B
.

Updates of the dynamic parameters In the Gibbs sampler, the initial probabilities are updated by sampling
from p(fl|snew

1 ). Due to conjugacy, this sampling reduces to

flnew ≥ Dirichlet‡1:M (÷’ + dnew)

where dnew = [dnew
‡1 , · · · , d

new
‡M

] is an array of zeroes and ones whose ‡m entry indicates whether s
new
1 = ‡m.

Similarly, the transition probabilities out of each ‡m are updated by sampling from p(fi‡m
|snew

1:N ). Again, due
to conjugacy, this sampling reduces to

finew
‡m

≥ Dirichlet‡1:M

!
–‡m

—
‡m

+ cnew
‡m

"

where cnew
‡m

= [cnew
‡mæ‡1 , · · · , c

new
‡mæ‡M

] is a vector whose ‡m æ ‡mÕ entry counts how many times the transition
‡m æ ‡mÕ occurs in s

new
1:N .

Note 8.7: Transition count matrix

Bookkeeping in algorithm 8.7 is simpler, if we tabulate the count arrays c‡m
into

‡1 ‡2 · · · ‡M

S

WU

T

XV

‡1 c‡1æ‡1 c‡1æ‡2 · · · c‡1æ‡M

‡2 c‡2æ‡1 c‡2æ‡2 · · · c‡2æ‡M

...
...

...
. . .

...
‡M c‡M æ‡1 c‡M æ‡2 · · · c‡M æ‡M

=

S

WU

T

XV

c‡1
c‡2

...
c‡M

= C

similar to the tabulation of �.

Updates of the observation parameters In the Gibbs sampler, the emission parameters of ‡m are updated by
sampling from p(„‡m

|snew
1:N , w1:N ). Using Bayes’ rule, this distribution factorizes as

p(„‡m
|snew

1:N , w1:N ) Ã H(„‡m
)

Ÿ

nœN new
‡m

G„‡m
(wn) (8.39)

where N new
‡m

gathers the indices n of the time levels when s
new
n

= ‡m. For arbitrary H and G„, sampling of
p(„‡m

|snew
1:N , w1:N ) cannot be performed directly and a within Gibbs scheme is required. Nevertheless, as we show

in example 8.3, distributions G„ with conjugate priors H are sampled directly.
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Example 8.3: Bayesian HMM with Normal observations

We consider a HMM with state-space ‡1:M and Normal emission densities

Gµ,· (w) = Normal
1

w; µ,
1
·

2
.

Gibbs sampling in this HMM is greatly simplified if we apply the conditionally conjugate prior

µ ≥ Normal
3

›,
1
Â

4
, · ≥ Gamma (–, —) .

With this choice of prior, a full update of the parameters µ‡m
, ·‡m

is achieved by successively sampling µ‡m
|·old

‡m
, s

new
1:N , w1:N

and ·
new
‡m

|µnew
‡m

, s
new
1:N , w1:N . With these choices, the factorization of eq. (8.39) leads to

µ
new
‡m

≥ Normal

A
Â› + ·

old q
nœN new

‡m

wn

Â + ·old|N new
‡m

| ,
1

Â + ·old|N new
‡m

|

B
,

·
new
‡m

≥ Gamma

A
– + 1

2 |N new
‡m

|, 1
1
—

+ 1
2

q
nœN new

‡m

(wn ≠ µ
new
‡m

)2

B
.

Updating each component µ‡m
and ·‡m

once per Gibbs iteration yields a valid sampler. However, mixing is better
if these samplings are alternated several times per iteration. As inner iterations typically require considerably fewer
computations than forward filtering backward sampling, for most HMM applications they add little to the sampler’s
overall computational cost while greatly improving its mixing.

Metropolis-Hastings sampling�

The Gibbs sampler described so far is most often su�cient for HMM applications whenever the total number of
time levels with measurements, N , is low or the emission distributions, G„‡m

, appreciably overlap. However, for
long sequences and/or well separated emission distributions, mixing of the Gibbs sampler may become poor. For
such cases, an alternative sampler, implemented in algorithm 8.9, that updates fl, �, „ while keeping the state
sequence s1:N marginalized, is preferable.

Algorithm 8.9: Metropolis-Hastings sampling for Bayesian HMM

Given an initial sample flold
, �old

, „old, which may be generated from the corresponding
priors, MCMC updates are carried out as follows.

• First, compute Ĉold
1:N based on flold

, �old
, „old and set Lold =

q
N

n=1 log Ĉold
n .

• Then iterate the steps:
– Generate proposals flprop

, �prop
, „prop based on flold

, �old
, „old.

– Compute Ĉprop
1:N based on flprop

, �prop
, „prop and set Lprop =

q
N

n=1 log Ĉprop
n .

– Perform the Metropolis-Hastings acceptance test based on
{Lold

, flold
, �old

, „old} and {Lprop
, flprop

, �prop
, „prop}.

� If acceptance test succeeds, set flnew = flprop
, �new = �prop

, „new =
„prop and Lnew = Lprop.

� If acceptance test fails, set flnew = flold
, �new = �old

, „new = „old and
Lnew = Lold.

Such a sampler may be developed based upon the same principles as the generic Metropolis-Hastings sampler
of section 5.2.1. In particular, to sample from a HMM’s posterior p(fl, �, „|w1:N ), a Metropolis-Hastings sampler
requires selecting a suitable proposal Qflold,�old,„old (flprop

, �prop
, „prop). Although such a proposal may attempt

�This is an advanced topic and could be skipped on a first reading.
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to update all parameters at once, in general, it is more practical to update one or at most few parameters at a
time. This may be achieved by a mixture proposal, for example, of the form

Qflold,�old,„old (flprop
, �prop

, „prop) = Ê Qflold,�old (flprop
, �prop) ”„old („prop)

+ (1 ≠ Ê) Q„old („prop) ”flold,�old (flprop
, �prop)

where, with probability Ê, only proposals for the dynamical parameters are made; while, with probability 1≠Ê, only
proposals for the observational parameters are made. In turn, each of the partial proposals Qflold,�old (flprop

, �prop)
and Q„old („prop) may consist of further mixtures themselves that propose flprop

, fiprop
‡m

, „
prop
‡m

separately.

Note 8.8: Choice of proposals

Generally, Q„old („prop) is problem specific; however, for Qflold,�old (flprop
, �prop) we may construct generic

proposals by considering products of Dirichlet distributions. For example as

Qflold,�old (flprop
, �prop) = Dirichlet‡1:M

!
flprop; Ÿflold" MŸ

m=1

Dirichlet‡1:M

!
fiprop

‡m
; ⁄fiold

‡m

"
.

This choice ensures that the proposed flprop
, �old consist of valid probability arrays and also allows for tuning of

the resulting acceptance rate through the values of Ÿ and ⁄.

Finally, once a proposal flprop
, �prop

, „prop is made, either through Qflold,�old (flprop
, �prop) or Q„old („prop),

an acceptance ratio

Aflold,�old,„old (flprop
, �prop

, „prop) = p (flprop
, �prop

, „prop|w1:N )
p

1
flold, �old

, „old|w1:N
2

◊
Qflprop,�prop,„prop

1
flold

, �old
, „old

2

Qflold,�old,„old (flprop, �prop
, „prop)

is computed to complete the Metropolis-Hastings acceptance test. The second ratio depends on the specific
choices for the proposals made and can be easily computed. The first ratio arises from the product of the ratio
of priors as well as marginal likelihoods

p (flprop
, �prop

, „prop|w1:N )
p

1
flold, �old

, „old|w1:N
2 = p (w1:N |flprop

, �prop
, „prop)

p

1
w1:N |flold, �old

, „old
2

¸ ˚˙ ˝
marginal likelihoods

p (flprop
, �prop

, „prop)
p

1
flold, �old

, „old
2

¸ ˚˙ ˝
priors

.

The last ratio depends exclusively on the priors and can also be easily computed. The other ratio is formed by the
marginal likelihoods which we need to evaluate through eq. (!8.30). In particular, filtering such as algorithm 8.5
needs to be invoked twice: once for p

1
w1:N |flold

, �old
, „old

2
and once for p (w1:N |flprop

, �prop
, „prop). As

filtering makes up the most computationally intensive part, both likelihoods can be retained and updated upon
acceptance. By doing so, at the next iteration, we may avoid recomputing p

1
w1:N |flold

, �old
, „old

2
thereby

reducing the computational load from two to only one filtering operation per iteration which renders this scheme
competitive with the earlier Gibbs scheme.

Note 8.9: Sampling the state sequence

If needed, algorithm 8.9 can also sample a state sequence to generate samples from the completed posterior
p(s1:N , fl, �, „|w1:N ) at little additional cost. For instance, following each filtering operation, if instead of only
computing marginal likelihoods we also maintain and update every forward term Â1:N (‡m), a new state sequence
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s
new
1:N can be obtained at the end of each Metropolis-Hastings iteration by executing only the backward sampling

stage of algorithm 8.8.

8.4.3 Interpretation and label switching�

Similar to the HMM’s likelihoods we saw in section 8.3.5, the posteriors (both marginal or completed) of the
Bayesian HMM in eqs. (8.31) to (8.36) are invariant to label permutations. In this case, the invariance can be
seen in the factorization

p (fl, �, „|w1:N ) Ã p (w1:N |fl, �, „)

◊ Dirichlet‡1:M (fl; ÷’)
MŸ

m=1
Dirichlet‡1:M

!
fi‡m

; –‡m
—

‡m

" MŸ

m=1
H(„‡m

)

and arises from the invariance of the likelihood as well as of the priors of section 8.4.1 with respect to label
permutation.

Note 8.10: Breaking the posterior’s invariance

Unlike the frequentist HMM, in a Bayesian HMM we may avoid the posterior’s invariance if we assign label specific
priors on the parameters. For instance, an alternative Bayesian HMM may be constructed with the following prior
choices

fl ≥ Dirichlet‡1:M (÷(’1, · · · , ’M )) ,

fi‡m
≥ Dirichlet‡1:M (–m(—mæ1, · · · , —mæM )) ,

„‡m
≥ Hm.

In this version, priors are label specific and, as a result, relabeling of the state-space leads to di�erent posterior
values to each one of the M ! samples produced by every label permutation. This way, we need not invoke post
hoc heuristics to resolve identifiability problems.

However, it is better if label specific priors are avoided. This is because priors, informed by state labels, may
hinder the mixing of the MCMC samplers applied. For best computational e�ciency, it is preferable to use priors
that are state, but not label, specific.

The posterior’s invariance to label permutations leads to multimodal posteriors. For example, for any MAP
estimate flú

, �ú
, „ú, there are M ! total maximizers produced by the label permutations. Each one of these M !

maximizers, under vague priors, is a local mode of the posterior and is associated with a unique labeling. As
eqs. (8.31) to (8.36) do not exhibit preference for a particular labeling of the state-space, in general, MCMC
samplers produce samples that may use any of them. In fact, a sampler that performs well samples the entire
posterior and thus, in the long run, switches between state labels producing samples from all M ! posterior modes.

As long as we are interested in deriving estimates that depend only on the constitutive states and not on
the particular labeling chosen, the MCMC chains generated are su�cient. For example, if all we care about is
quantifying the emission parameters attained at a particular level, we may focus on p(„sn

|w1:N ) alone which, in
itself, has only one permutation.

To derive label specific estimates, and therefore to allow for full interpretation of our estimates, we can impose
post hoc identifiability constraints in terms of the state labels similar to the frequentist HMM of section 8.3.5. For
instance, because all M ! modes are equally probable, for each MCMC sample computed we can consider all other
M ! ≠ 1 permutations, by forming every possible permutation, and selecting the one that satisfies our constraints.
Below we explain the steps involved in more detail.

Suppose that an MCMC sampler has already been employed, and for clarity, we denote with ◊(j)
k

= {s(j)
k

, fl(j)
k

, �(j)
k

, „(j)
k

}
and k = 1 the values sampled at the j

th iteration. As we have M ! total permutations, we have K = M ! total
�This is an advanced topic and could be skipped on a first reading.
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posterior samples which we index with k = 1 : K. We use k > 1 to denote every other sample value that can
be formed by ◊(j)

1 through permutations of the state labels. As we mentioned above, due to label invariance, all
such samples are equiprobable

p

1
◊(j)

1 |w1:N
2

= p

1
◊(j)

k
|w1:N

2
.

To restore identifiability, it is su�cient to select a single ◊(j)
k

out of ◊(j)
1:K satisfying our constraints. Since the

permutation satisfying the constraints generally may di�er from iteration to iteration, we designate it with k
(j).

Perhaps the simplest way to impose identifiability relies on an ordering of the emission parameters, if one exists.
For instance, provided „‡m

are real scalars, a labeling of the state-space ‡
Õ

1:M may be selected such that it leads
to a unique arrangement „‡

Õ
1

< · · · < „‡
Õ
M

(such as increasing mean signal level). In this simple case, k
(j) may

be easily identified and ◊(j)
k(j) readily found. This strategy, of course, is problem specific and very sensitive to the

parameterization of the mother distribution G„ as well as to the imposed arrangement of the emission parameters
„. Further, it is unable to handle multivariate emission parameters or parameters that cannot be arranged in a
sensible way. Below we describe an alternative strategy with higher computational cost and, although heuristic in
nature, is less reliant on parametrizations.

For this strategy, we first need to select a reference point ◊̂ against which we can compare ◊(j)
k

. Subsequently,
for each j, out of ◊(j)

1:K , we select ◊(j)
k(j) that yields the best match. The reference ◊̂ can be either an ad hoc

chosen point in the space of s, fl, �, „ or the MCMC sample with the highest posterior value. The latter can be
readily found post hoc among the computed MCMC values ◊(j)

1 .
Once an appropriate reference ◊̂ is selected, the comparison can be based on a dissimilarity function D

!
◊, ◊Õ

"

that we also need to choose. For example, if D
!
◊, ◊Õ

"
is based on the Euclidean distance, then selection from

◊(j)
1:K results in finding the k belonging to the same semi-orthant with ◊̂. Of course, such k is unique.

Note 8.11: Dissimilarity function

A dissimilarity function D(◊, ◊Õ) associated to every pair ◊ and ◊Õ yields a positive real scalar quantifying the
dissimilarity between ◊ and ◊Õ. For example, for two identical samples ◊ = ◊Õ, the dissimilarity must be zero;
while, for di�erent samples ◊ ”= ◊Õ the dissimilarity must be strictly positive. Solely for restoring identifiability,
D(◊, ◊Õ) need not be symmetric. For instance, D(◊, ◊Õ) and D(◊Õ

, ◊) could attain di�erent values.

A computationally convenient family of D(◊, ◊Õ) is o�ered by those additive over the dissimilarities of the
individual state labels

D(◊, ◊Õ) =
Mÿ

m=1
Em

!
◊, ◊Õ

"

where Em

!
◊, ◊Õ

"
is a dissimilarity function that compares only ‡m of ◊ with ‡

Õ

m
of ◊Õ. In this case, finding the

best ◊(j)
k

out of ◊(j)
1:K , reduces to a linear assignment problem, namely to finding the best association between the

labeling ‡1:M employed in ◊ and the labeling ‡Õ

1:M employed in ◊Õ. As such, it can be solved e�ciently through
the Hungarian algorithm without explicitly forming each one of the K samples ◊(j)

1:K .

8.5 Dynamical variants of the Bayesian HMM�

As we mentioned earlier, the Bayesian HMM a�ords flexibility otherwise unavailable within the frequentist
paradigm. For example, we may consider hierarchical formulations with hyperpriors on —

‡m
and, as we see

in the next section, develop a HMM whose state-space ‡1:M may grow arbitrarily in size. In doing so, such a
formulation avoids the pitfalls of having to specify a particular size M to begin with, which is often a serious
limitation when studying uncharacterized dynamical systems.

�This is an advanced topic and could be skipped on a first reading.
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Before we turn to the study of uncharacterized systems, however, we focus on systems for which M is assumed
known. For several such systems, properly tuning the prior on fl and � is su�cient in introducing flexibility in
modeling dynamics. While scenarios we may consider are endless, we restrict ourselves to only to few key cases
herein.

8.5.1 Modeling time scales

Earlier, in section 8.4.1, we spoke of priors on transitions probabilities. As we now show, these priors directly
impact the induced prior on the escape time which, for some applications, constitutes a more natural quantity
with which to work. Here we discuss how Bayesian methods provide us the ability to directly place priors on
escape times and thus model timescales.

In particular, on account of the Markov assumption built into the dynamics of the state sequence s1:N , once a
system modeled by a HMM visits a constitutive state ‡m, it remains for a random number of additional steps D‡m

before escaping and selecting another constitutive state. Specifically, in section 2.4.3, we derived the distribution

D‡m
|fi‡mæ‡m

≥ Geometric(1 ≠ fi‡mæ‡m
)

which exclusively depends upon the self-transition probability fi‡mæ‡m
. Under the prior of section 8.4.1, we

immediately obtain fi‡mæ‡m
≥ Beta (–‡m

—‡mæ‡m
, –‡m

(1 ≠ —‡mæ‡m
)), which we may use to derive the induced

prior on D‡m
, namely

D‡m
≥ BetaNegBinomial (1, –‡m

—‡mæ‡m
, –‡m

(1 ≠ —‡mæ‡m
)) .

This illustrates how the priors applied on an HMM’s transition probabilities, in essence, also act as priors on
induced timescales. For instance, since the mean of D‡m

is

ÈD‡m
Í = –‡m

—‡mæ‡m

–‡m
(1 ≠ —‡mæ‡m

) ≠ 1

we can tune the hyperparameters –‡m
and —‡mæ‡m

to influence priors on dwell periods selecting an a priori

desired duration. For example, if a duration ÈD‡m
Í is specified, setting

–‡m
= ÈD‡m

Í
(1 ≠ —‡mæ‡m

)ÈD‡m
Í ≠ —‡mæ‡m

provides a recipe for adjusting the values of –‡m
that allows for state specific time scales.

Note 8.12: The sticky HMM

One way of influencing the same timescale across all constitutive states in a Bayesian HMM proceeds via setting
every –‡m

= – equal and reparametrizating —
‡m

as

—
‡m

= (1 ≠ c)B + cD‡m

where c is a scalar selected between 0 and 1; B = [B‡1 , · · · , B‡M
] is a probability array; while, D‡m

=
[D‡mæ‡1 , · · · , D‡mæ‡M

] is a probability array specific to each constitutive state ‡m. The latter can be used
to separate self-transitions by setting D‡mæ‡m

= 1 and D‡mæ‡
mÕ = 0. The resulting prior on � now takes the

form

fi‡m
≥ Dirichlet‡1:M (–(1 ≠ c)B + –cD‡m

) .

With this prior, self-transitions over the entire state-space are reinforced with only a limited number of hyperpa-
rameters –, c, B. Due to its ability to reinforce self-transitions and long dwells, this prior is termed sticky . Under
the sticky prior, the induced dwell durations are

ÈD‡m
Í = c + (1 ≠ c)B‡m

(1 ≠ c) (1 ≠ B‡m
) ≠ 1

–

which become uniform over ‡1:M by setting B‡m
= 1/M .
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8.5.2 Modeling equilibrium

Provided every —‡mæ‡
mÕ is non-zero, the prior on � ensures that the transition probabilities fi‡mæ‡

mÕ in a
Bayesian HMM are strictly positive. This, in turn, ensures that transitions between any pair of constitutive states
are possible in all resulting s1:N . Therefore, a system modeled by such a HMM is ergodic, i.e., may explore the
entire state-space. Such systems, if allowed to evolve for su�ciently long time, may reach equilibrium.

For a dynamical system at equilibrium, initialization, and kinetics are interrelated. In particular, fl‡m
and

fi‡mæ‡
mÕ satisfy the balance condition

fl‡m
=

Mÿ

mÕ=1
fl‡

mÕ fi‡
mÕ æ‡m

.

For a dynamical system at equilibrium, we can use this condition to express fl in terms of �, suggesting that at
equilibrium fl is a dependent parameter. Accordingly, to model a system at equilibrium, we need to place priors
only on �. For example

fi‡m
≥ Dirichlet‡1:M

!
–‡m

—
‡m

"
,

„‡m
≥ H,

s1|� ≥ Categorical‡1:M (fl�) ,

sn|sn≠1, � ≥ Categorical‡1:M (fi‡m
) , n = 2 : N

wn|sn, „ ≥ G„sn
, n = 1 : N

in which the initial probability array fl� is now dictated by the balance condition.
Although the prior on � is the same as seen before, due to its implicit e�ect on fl�, it is no longer conjugate

to s1:N |�. Consequently, we cannot use the Gibbs sampler of algorithm 8.7 to obtain MCMC samples fi‡m
|s1:N

and inference is only possible by means of a Metropolis-Hastings sampler such as an appropriately adjusted
algorithm 8.9.

8.5.3 Modeling reversible systems

The prior on � we just discussed enforces equilibrium on the HMM which is somewhat stronger than simply
ensuring reversibility of the kinetics irrespective of equilibrium being reached by the time of the first measure-
ment. To model a reversible dynamical system, that may not necessarily have reached equilibrium before the
measurement’s onset, we need to consider independent priors on fl and �. In such case, fl ≥ Dirichlet‡1:M (÷’)
remains an appropriate choice; however, ensuring reversible kinetics requires fundamentally di�erent choices for
�.

Note 8.13: A reversible HMM

One way to ensure a reversible � is to reparametrize the transition probabilities as

fi‡mæ‡
mÕ =

⁄‡m¡‡
mÕq

M

mÕÕ=1 ⁄‡m¡‡
mÕÕ

.

Reversibility is ensured by requiring that the new parameters be pairwise symmetric

⁄‡m¡‡
mÕ = ⁄‡

mÕ ¡‡m
.

On account of symmetry, in the new parametrization, we need only M(M + 1)/2 priors that we may select
independently. For instance

⁄‡m¡‡
mÕ ≥ Gamma

!
fE‡m

E‡
mÕ , 1

"

where f and E‡1 , · · · , E‡M
are hyperparameters controlling how tightly each constitutive state couples to the

others.

244



The kinetic scheme induced by the symmetric prior of ⁄‡m¡‡
mÕ leads to the following reparametrized equilib-

rium distribution

flú =

C q
M

m=1 ⁄‡1¡‡mq
M

m=1
q

M

mÕ=1 ⁄‡
mÕ ¡‡m

, · · · ,

q
M

m=1 ⁄‡M ¡‡mq
M

m=1
q

M

mÕ=1 ⁄‡
mÕ ¡‡m

D
.

As a result, whenever equilibrium needs to be imposed as a stronger condition to reversibility, we may proceed by
setting the initial probabilities fl equal to flú.

8.5.4 Modeling kinetic schemes

Unlike the ergodic HMM where the system may evolve to and from any constitutive state, some physical sce-
narios require that some transitions be prohibited. For example, modeling irreversible chemical reactions such as
photo-bleaching where molecules undergo a chemical change rendering them unable to fluoresce at a designated
wavelength.

From the modeling perspective, we can take advantage of the flexibility allowed by the hyperparameters
—‡mæ‡

mÕ to model kinetic schemes. Under the prior of section 8.4.1, a transition probability fi‡mæ‡
mÕ is zero

only when the corresponding —‡mæ‡
mÕ is zero. Essentially, to ensure that the system modeled cannot undergo

some transitions, or undergoes other transitions into a certain order, we need to properly set the sparsity pattern
of

‡1 ‡2 · · · ‡MS

WWU

T

XXV

‡1 —‡1æ‡1 —‡1æ‡2 · · · —‡1æ‡M

‡2 —‡2æ‡1 —‡2æ‡2 · · · —‡2æ‡M

...
...

... . . . ...
‡M —‡M æ‡1 —‡M æ‡2 · · · —‡M æ‡M

=

S

WWU

T

XXV

—
‡1

—
‡2...

—
‡M

.

Example 8.4: A left-to-right HMM

To model a system, such as an idealized molecular motor with no reverse stepping, where returning to previous
constitutive states are prohibited, we may use a left-to-right structure of the form

‡1 ‡2 ‡3 ‡4 ‡5S

WWU

T

XXV

‡1 1/5 1/5 1/5 1/5 1/5
‡2 0 1/4 1/4 1/4 1/4
‡3 0 0 1/3 1/3 1/3
‡4 0 0 0 1/2 1/2
‡5 0 0 0 0 1

=

S

WWU

T

XXV

—
‡1

—
‡2

—
‡3

—
‡4

—
‡5

where, for simplicity, we have chosen a state-space of size M = 5. Observed for a su�ciently long period, N ∫ 1,
a system modeled as such eventually reaches ‡5. Since the prior imposed on fi‡5 is deterministic, allowing only
for fi‡5 = [0, 0, 0, 0, 1], this model is then equivalent to modeling absorbing dynamics at the boundary.

8.5.5 Modeling factorial dynamics

Occasionally the underlying system of interest consists of multiple components that evolve independently. Al-
though in such systems each component follows its own dynamics, it may be possible that the entire system is
assessed only through a common observation. That is, all components may give rise a single collective observation.
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Figure 8.3: Graphical representation of a factorial HMM. The top panel shows the basic structure; while, the lower panel
indicated also dependencies on the parameters.

Example 8.5: Photo-blinking

Imagine that we observe a specimen consisting of K fluorescent probes undergoing photo-blinking. That is, each
probe switches between a bright and a dark states, which we may model by ‡1 and ‡2, respectively. Under idealized
conditions, i.e., when probes are faraway from each other, we assume that each probe switches between ‡1 and ‡2
independently. We can readily model such a scenario with

s
k

n|sk

n≠1, � ≥ Categorical
‡1:2 (fi

s
k
n

).

Here, s
k

n is the state, termed photo-state, of the k
th probe at the time of the n

th assessment and � gathers the
transition probabilities fi‡1 and fi‡2 .

When a probe is bright, it emits photons with a rate µ‡1 > 0. However, when the probe is dark, it emits no
photons, which we model with a rate µ‡2 = 0. Since photon emissions from all probes are additive, in total, our
specimen emits photons with a rate that combines contributions from all probes. As such, the photon emission
rate driving the n

th assessment is
q

K

k=1 µ
s

k
n

. Considering a detector with exposure time ·exp, this leads to an
emission distribution

wn|s1:K
n ≥ Poisson

A
·exp

Kÿ

k=1

µ
s

k
n

B
,

where wn denotes the net amount of photon detections at the n
th time level.

Naturally, such a system may be formulated by a generalization of the HMM as follows

s
k

1 |fl ≥ Categorical
‡1:M (fl), k = 1 : K

s
k

n
|sk

n≠1, � ≥ Categorical
‡1:M (fisk

n
), n = 2 : N, k = 1 : K

wn|s1:K
n

, „ ≥ Gq
K

k=1
„

s
k
n

, n = 1 : N.

In this model, each component is modeled by its own state s
k

n
. However, at each time level, observations are

coupled by a common emission distribution Gq
K

k=1
„

s
k
n

. This formulation is termed factorial hidden Markov model

and it is depicted graphically in fig. 8.3. Inference in this system relies on the posterior p
!
s

1:K
1:N , fl, �, „|w1:N

"

and follows the same filtering and smoothing algorithms seen earlier.
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8.6 The infinite Hidden Markov Model�

In the previous section, we saw how a Bayesian HMM constructed around a fixed state-space ‡1:M can identify
the characteristics of each constitutive state ‡m, for example dynamical and observational parameters represented
by fl, � and „, respectively. These characteristics are captured in the posterior p(fl, �, „|w1:N ) which, for the
models presented so far, inevitably depends upon the size, M , of the state-space employed.

In practice, we often need to study dynamical systems whose state-space is uncharacterized. In this case, our
knowledge of the system at hand does not allow us to specify a unique M . Indeed, despite the generality and
elegance of our formulations, the dependence of our posteriors upon M is a limiting factor. Luckily, extensions
of the Bayesian formulation are possible resulting in posterior distributions independent of M which may remain
unspecified or arbitrarily large.

In particular, by building upon the Bayesian HMM and using appropriate hyperpriors, described shortly, we
may develop a HMM version whose state-space is infinite. Such a formulation remains valid and may be applied
even when our primary goal is to identify the characteristics of the constitutive states visited by the system while
the total number of available states is unknown.

Note 8.14: Dynamics on infinite state-spaces

With an infinite state-space, our system has access to infinite constitutive states. Specifically, each time the system
departs from a passing state sn it may escape to infinitely many ‡m. Provided that the system has already visited
only a finite number of them, this means that, at every transition, the systems can always explore new states that
will be visited for the first time. In principle, such a system may be allowed to visit an unvisited state every time it
transitions. Although such scenarios may arise, for example such as birth processes of example 2.4, most often we
are interested in studying systems that frequently or sporadically revisit states. For the latter systems, the number
of constitutive states visited during the time course of our measurements, which is finite, is drastically lower that
the total number of observations.

As we mentioned, the posterior p(fl, �, „|w1:N ) of the model in eqs. (8.31) to (8.36) depends upon M . Such
dependency signifies that with a di�erent number of constitutive states available, di�erent choices of kinetic fl, �
and emission „ parameters are assigned under the measurements w1:N . To eliminate such dependence on M , we
need to be able to reinforce state revisiting in an infinite state model. This can be achieved by properly selecting
the priors on the initial and transition probabilities fl and �.

One way to do so is to consider placing a common prior among all constitutive states. In this case, setting ÷

and all –‡m
equal. For simplicity, we denote the latter with –. Also, we may set all elements of the arrays ’ and

—
‡m

equal and denote them with — = [—‡1 , · · · , —‡M
]. Under this common prior, constitutive states with high

—‡m
generally receive more transitions into them than constitutive states with low —‡m

.
Of course, for an uncharacterized system, we cannot identify beforehand how often the constitutive states are

visited or even which of them are visited more often than others. Thus, in principle, the prior — is unknown too
and we need to estimate it in parallel with other quantities of interest. For this reason, we place a hyperprior on
— and, as — is a probability array, the most natural choice for it is also a Dirichlet distribution. This leads to the
following hierarchical Dirichlet formulation

— ≥ Dirichlet‡1:M (“›) , (8.40)
fl|— ≥ Dirichlet‡1:M (–—) , (8.41)

fi‡m
|— ≥ Dirichlet‡1:M (–—) , (8.42)

where “ is a positive scalar and › a probability array. As our system is uncharacterized, at this stage, as we cannot
distinguish among the constitutive states, we need to ensure symmetry of —, which we may achieve through

› =
5 1

M
, · · · ,

1
M

6
.

�This is an advanced topic and could be skipped on a first reading.
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As anticipated, the hierarchical prior of eqs. (8.40) and (8.41), when combined with the HMM’s kinetics and
emissions

„‡m
≥ H,

s1|fl ≥ Categorical‡1:M (fl) ,

sn|sn≠1, � ≥ Categorical‡1:M (fi‡m
) , n = 2 : N

wn|sn, „ ≥ G„sn
, n = 1 : N

results in a posterior p(fl, �, „|w1:N ) that converges in the limit M æ Œ. Consequently, so long as M is
su�ciently large, the HMM above provides estimates independent of the particular M values chosen.

Computational inference on this model can be based on appropriate modifications of the Gibbs or Metropolis-
Hastings samplers of algorithms 8.7 and 8.9. The modifications for the latter are straightforward and, for
this reason, here we focus only on a presentation of the Gibbs sampler which targets the completed poste-
rior p (s1:N , —, fl, �, „|w1:N ). For this target, only an additional step to update — is required of algorithm 8.7.
This update needs to sample — from its full conditional p (—|s1:N , fl, �, „, w1:N ) which reduces to p (—|fl, �).
However, since eq. (8.40) is not conjugate with eqs. (8.41) and (8.42), a Metropolis-Hastings step is necessary.

Note 8.15: iHMM

The description and the associated computational schemes we presented in this section rely on a finite approximation
of the infinite hidden Markov model (iHMM). Formally, the latter is the model achieved in the limiting case M = Œ
and entails a truly infinite state-space ‡1:Œ. In this limit, a detailed description of the corresponding generative
model involves the Dirichlet and hierarchical Dirichlet processes. It is also possible to carry out our computational
inference on the exact iHMM instead of relying on finite approximations. For example, it is possible to carry out
MCMC sampling involving an infinite state-space by completing the posterior

p (s1:N , —, fl, �|w1:N ) =
⁄

du1:N p (u1:N , s1:N , —, fl, �|w1:N )

with auxiliary slice variables u1:N as we developed in example 5.14. The resulting sampler gives rise to beam
sampling schemes.

8.7 A case study in fluorescence spectroscopy�

Favoring simplicity, so far we focused on problems where observations depend directly on the underlying hidden
states or, as we might call them, on first order HMM. To help illustrate why the methods presented here are more
general than what first appears, we describe a case study involving dynamics in continuous time that necessarily
leads to a second order HMM as observations occur precisely at jump times. In this case study, we introduce
an auxiliary variable method, inspired from section 5.4.3, in order reduce the second order HMM to a first order
HMM for which the algorithms provided in this chapter hold. We also demonstrate how to discretize time in
order to incorporate continuous time observations. This treatment here is necessary for observations occurring at
jump times. More complex models with continuous dynamics and observations at arbitrary times are dealt with
in chapter 10.

8.7.1 Time resolved spectroscopy

We start by considering an important class of experiments that does not probe the state of the dynamical system of
interest but rather jumps in the system’s trajectory. For instance, time-resolved spectroscopic experiments collect
individual photons and report on their detection time. Since the detected photons stem from the probed physical
system, they are emitted precisely when the system (an atom or, more typically, molecule) jumps across energy

�This is an advanced topic and could be skipped on a first reading.
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Figure 8.4: Jablonski diagram of a fluorophore possessing three energy states: G, S, and T . Arrows indicate Markovian
transitions at the rates shown. Solid and dashed arrows distinguish between detectable and non-detectable transitions.

levels. Since the time a photon needs to reach the detector in such experiments is insignificant, the recorded
photon detection times report upon transitions between, rather than instantaneous, states of the system.

In this case study, we consider a fluorescent molecule, i.e., a fluorophore, with three energy states labeled with
G, S, T . Respectively, these are: the fluorophore’s ground state (state with the lowest energy); the first excited
singlet state (state with the highest energy); and the first excited triplet state (state with intermediate energy).
These are typically depicted schematically, in increasing energy order, using a Jablonski diagram like fig. 8.4.

During an experiment, while residing in G, a fluorophore absorbs energy at a random time and undergoes a
transition G æ S. Subsequently, after residing for a short period in S, the fluorophore undergoes either an S æ G

or an S æ T transition. If in T , the fluorophore may only undergo a T æ G transition. All such transitions
are denoted with arrows in fig. 8.4. Terminating at G, the fluorophore is re-excited and the same cycle repeats
until the conclusion of the experiment. Physical Chemistry often models dwells in each one of the three states as
memoryless. This leads to a kinetic scheme fully determined by the transition rates ⁄GæS , ⁄SæG, ⁄SæT , ⁄T æG

also shown in fig. 8.4.
Of interest is often the mean dwell time in the excited state S, i.e., the so called fluorescence lifetime, which

helps in characterizing the fluorophore. This is because lifetime is often unique to each molecule or alternative
chemical forms of a molecule (assuming that, within error, lifetimes are su�ciently well-separated that they can
be distinguished).

On the theoretical front, what makes this set-up challenging to analyze is the fact that photons are emitted
and detected only whenever the fluorophore undergoes the transition S æ G; while, in a typical experiment, all
other transitions are either non-radiative or emit photons not otherwise detected. The situation is even more
complicated due to the fact that, even when the fluorophore undergoes S æ G transitions, photons may not
always be emitted or may not always be detected. Here we formulate this system and show how the general
framework for HMMs can be used to estimate transition rates and eventually, through them, the fluorescence
lifetime.

8.7.2 Discretization of time

For clarity, we consider an experiment that starts at time Tmin and concludes at time Tmax. Further, we use Tk,
with indices k = 1 : K, to denote the reported photon detection times which we arrange in ascending order,
i.e., Tk≠1 < Tk.

To operate within the HMM framework, we must first discretize time. For this, we break the experiment’s
time course into a total of N hypothetical windows separated by the time levels

tn = Tmin + n

N
(Tmax ≠ Tmin) , n = 0 : N.

These time levels define N windows which we successively index by n = 1 : N . Specifically, our n
th window spans

the time interval between tn≠1 and tn.
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8.7.3 Formulation of the dynamics

Following notation we first introduce in section 2.3, we denote with S(t) the passing state at time t of our
fluorophore. Due to memorylessness, the trajectory S(·) is a Markov jump process with state-space G, S, and T

and its transition rate matrix is given by

� =

S

U
0 ⁄GæS ⁄GæT

⁄SæG 0 ⁄SæT

⁄T æG ⁄T æS 0

T

V .

Our end goal is to estimate the unknown entries of �. To do so, we do not need the full trajectory S(·).
Instead, we focus on the passing states only at the time levels tn which are already su�cient to link � with our
measurements. Accordingly, for each time level, we consider the corresponding passing state

sn = S(tn), n = 0 : N.

As the underlying trajectory is a Markov jump process, we can easily deduce the transition rules of our dynamical
model

sn|sn≠1 ≥ Categorical
G,S,T

!
fisn≠1

"
, n = 1 : N.

According to eq. (2.15), the transition probabilities stem from the rows of the propagator

� =

S

U
fiG

fiS

fiT

T

V =

S

U
fiGæG fiGæS fiGæT

fiSæG fiSæS fiSæT

fiT æG fiT æS fiT æT

T

V = Qtn≠1ætn = exp
3

Tmax ≠ Tmin
N

G

4
(8.43)

that corresponds to the generator G of the rate matrix �. As with every dynamical system seen so far, the kinetic
model does not specify the initial conditions. Consequently, we need to model the initialization rule separately

s0 ≥ Categorical
G,S,T

(fl)

with appropriate initial probabilities fl = [flG, flS , flT ] that may pr may not be related to � depending upon the
specifics of the experiment.

8.7.4 Formulation of the measurements

The most convenient way to model the photon detection times is to consider a set of observation variables w1:N ,
where each one of our windows is associated with its own wn. We encode the photon detection times T1:K by
setting wn = 1 when at least one photon is detected and setting wn = 0 when no photon is detected during our
n

th window.

Note 8.16: Observations

If we use Nk to denote the window that encodes the k
th photon detection time, Tk, we see that

Nk =
Ï

N
Tk ≠ Tmin

Tmax ≠ Tmin

Ì
, k = 1 : K

where ÁxË is the ceiling function, i.e., the smallest index that is larger than x.
When we attempt to model our photon detections with a low N , our windows may be large and misleadingly,

some of them, may absorb more than one photon detection. However, as N grows large, and our windows
correspondingly shrink, the photon detections times T1:K are encoded in di�erent, well separated, windows. For
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Figure 8.5: A HMM for fluorescence spectroscopy representing time resolved measurements, T1:K , by observation variables
wn that are linked to the passing states sn of the underlying fluorophore. By contrast to the observation variables w1:N
measured in an experiment, the passing states s0:N remain hidden.

su�ciently large N , our observation variables w1:N follow the pattern

0, · · · , 0¸ ˚˙ ˝
windows
1:N1≠1

,

T1˙˝¸˚
1 , 0, · · · , 0¸ ˚˙ ˝

windows
N1+1:N2≠1

,

T2˙˝¸˚
1 , 0, · · · , 0¸ ˚˙ ˝

windows
N2+1:N3≠1

,

T3˙˝¸˚
1 , 0 · · · · · · 0,

TK˙˝¸˚
1 , 0, · · · , 0¸ ˚˙ ˝

windows
NK +1:N

.

On account of this pattern, our observation sequence w1:N contains no successive windows with wn = 1. By
contrast, it contains multiple successive windows with wn = 0.

Under the variables w1:N , it is straightforward to model our assessment rules by

wn|sn≠1, sn ≥ Bernoulli
!
—sn≠1æsn

"
, n = 1 : N

and, as we have nine possible pairs sn≠1 æ sn, we need to specify nine di�erent Bernoulli weights. To a good
approximation, these are given by

—GæG ¥ 0, —GæS ¥ 0, —GæT ¥ 0,

—SæG ¥ ÷, —SæS ¥ 0, —SæT ¥ 0,

—T æG ¥ 0, —T æS ¥ 0, —T æT ¥ 0,

where ÷ is the fraction of detectable transitions S æ G to total transitions S æ G. To be clear, all approximately
zero terms above become strictly zero in the limit that N tends to infinity.

Our approximations on —sn≠1æsn
improve and eventually become exact as N æ Œ for which our hypothetical

windows become so narrow that they accommodate no more than one transition. For this reason, our end goal is
to devise a training method for our model supporting this limit. Put di�erently, our strategy is to derive a set of
training equations on which we can formally reach the N æ Œ limit.

8.7.5 Modeling overview

In summary, the model of time resolved fluorescence spectroscopy developed so far reads

s0 ≥ Categorical
G,S,T

(fl),
sn|sn≠1 ≥ Categorical

G,S,T

!
fisn≠1

"
, n = 1 : N

wn|sn≠1, sn ≥ Bernoulli
!
—sn≠1æsn

"
, n = 1 : N

and is depicted graphically in fig. 8.5. An immediate challenge that we face is that each observation variable
wn|sn≠1, sn depends on two, rather than one, hidden states. On account of this almost imperceptible di�erence,
with dramatic theoretical consequences, none of the basic algorithms developed in section 8.3 apply.
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Figure 8.6: A HMM, augmented with additional hidden states u1:N , v1:N , is used to decouple successive passing states
s0:N from their respective observations w1:N .

8.7.6 Reformulation

To continue, we must reformulate our model in such a way that it becomes similar to the HMM devised earlier.
Namely, we need to transform it such that each observation is associated with only one hidden state.

One way to achieve a transformation is to consider a positive time period · , but otherwise su�ciently small,
· < (Tmax ≠Tmin)/N . With the aid of · , we introduce two auxiliary variables. That is, we consider two additional
passing states per time level

un = S
1

tn≠1 + ·

2
2

, vn = S
1

tn ≠ ·

2
2

, n = 1 : N.

From these new states, un occurs near the very beginning and vn occurs near the very end of their respective
window. Due to memorylessness, we can exactly represent the dynamics of our system

un|sn≠1 ≥ Categorical
G,S,T

1
ÂÕ

sn≠1

2
, n = 1 : N

vn|un ≥ Categorical
G,S,T

!
fiÕ

un

"
, n = 1 : N

sn|vn ≥ Categorical
G,S,T

!
ÂÕ

vn

"
, n = 1 : N.

The new transition probabilities are obtained through the rows of the propagators

�Õ =

S

U
ÂÕ

G

ÂÕ

S

ÂÕ

T

T

V =

S

U
Â

Õ

GæG
Â

Õ

GæS
Â

Õ

GæT

Â
Õ

SæG
Â

Õ

SæS
Â

Õ

SæT

Â
Õ

T æG
Â

Õ

T æS
Â

Õ

T æT

T

V = Qtn≠1ætn≠1+ ·

2 = Qtn≠
·

2 ætn = exp
1

·

2 G
2

,

�Õ =

S

U
fiÕ

G

fiÕ

S

fiÕ

T

T

V =

S

U
fi

Õ

GæG
fi

Õ

GæS
fi

Õ

GæT

fi
Õ

SæG
fi

Õ

SæS
fi

Õ

SæT

fi
Õ

T æG
fi

Õ

T æS
fi

Õ

T æT

T

V = Qtn≠1+ ·

2 ætn≠
·

2 = exp
33

Tmax ≠ Tmin
N

≠ ·

4
G

4
.

Taking advantage of the new states, and provided · is su�ciently small, we can introduce another approximation
to the observations

—sn≠1æsn
¥ —unævn

, n = 1 : N.

This approximation becomes exact as · æ 0+ at which un and vn essentially merge with sn≠1 and sn, respectively.
Of course, since · < (Tmax ≠ Tmin)/N , this limiting condition does not introduce further restrictions in our
formulation since it is already fulfilled under N æ Œ.
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Gathering everything together, our reformulated Markov model that leverages auxiliary variables reads

s0 ≥ Categorical
G,S,T

(fl),

un|sn≠1 ≥ Categorical
G,S,T

1
ÂÕ

sn≠1

2
, n = 1 : N

vn|un ≥ Categorical
G,S,T

!
fiÕ

un

"
, n = 1 : N

sn|vn ≥ Categorical
G,S,T

!
ÂÕ

vn

"
, n = 1 : N

wn|un, vn ≥ Bernoulli (—unævn
) , n = 1 : N

and it is depicted graphically in fig. 8.6. Now, because the states s0:N are no longer directly associated with
observations, we can a�ord to discard them through marginalization, which leads to an equivalent, but somewhat
simpler, model

u1 ≥ Categorical
G,S,T

(flÕ),
v1|u1 ≥ Categorical

G,S,T

!
fiÕ

u1

"
,

un|vn≠1 ≥ Categorical
G,S,T

1
ÂÕÕ

vn≠1

2
, n = 2 : N

vn|un ≥ Categorical
G,S,T

!
fiÕ

un

"
, n = 2 : N

wn|un, vn ≥ Bernoulli (—unævn
) , n = 1 : N

which we depict graphically in the left panel of fig. 8.7. Marginalization implies that, in this model, the initial
probabilities are given by

flÕ =
#
fl

Õ

G
fl

Õ

S
fl

Õ

T

$
= fl�Õ = fl exp

1
·

2 G
2

and the transition probabilities by the rows of

�ÕÕ =

S

U
ÂÕÕ

G

ÂÕÕ

S

ÂÕÕ

T

T

V =

S

U
Â

ÕÕ

GæG
Â

ÕÕ

GæS
Â

ÕÕ

GæT

Â
ÕÕ

SæG
Â

ÕÕ

SæS
Â

ÕÕ

SæT

Â
ÕÕ

T æG
Â

ÕÕ

T æS
Â

ÕÕ

T æT

T

V = �Õ�Õ = exp (·G) .

Note 8.17: HMM order reduction

The last version of our model represents a conventional HMM as introduced in section 8.2. To make the corre-
spondence clearer, we consider super-states ›n = (un, vn), depicted graphically on the right panel of fig. 8.7, and
rewrite the model in the equivalent form

›1 ≥ Categorical
‰1:9 (r),

›n|›n≠1 ≥ Categorical
‰1:9

!
P ›n≠1

"
, n = 2 : N

wn|›n ≥ Bernoulli (—›n
) , n = 1 : N.

The initial, r, and transition, P ›, probabilities are determined according to flÕ
, �Õ

, �ÕÕ. In particular, these are

r›1 = p(›1) = p(u1, v1)
= p(v1|u1)p(u1) = fi

Õ
u1æv1 fl

Õ
u1 ,

P›n≠1æ›n
= p(›n|›n≠1) = p(un, vn|un≠1, vn≠1)

= p(vn|un, un≠1, vn≠1)p(un|un≠1, vn≠1)
= p(vn|un)p(un|vn≠1) = fi

Õ
unævn

Â
ÕÕ
vn≠1æun

.
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Figure 8.7: Left: A modified HMM with two decoupled passing states per observation. Right: An equivalent HMM with
one passing state per observation.

As each super-state is formed by a pair of G, S, and T , our new state-space consists of

‰1 = GG, ‰2 = GS, ‰3 = GT,

‰4 = SG, ‰5 = SS, ‰6 = ST,

‰7 = T G, ‰8 = T S, ‰9 = T T,

and, because each constitutive super-state is derived from G, S, and T , similar to example 2.8, we follow the
common convention and order ‰1:9 lexicographically.

8.7.7 Computational training

Via auxiliary variables, we have re-formulated our second order Markov model problem in order to make it amenable
to a similar training strategy as the conventional HMM of sections 8.3 and 8.4. In its final version, the unknown
parameters are still those of the initial problem, namely the entries of � and potentially fl, ÷. The likelihood of
our model, formally given by p(w1:N |�, fl, ÷), can be computed according to eq. (8.7) by completion with the
terminal states

p (w1:N |�, fl, ÷) =
ÿ

uN ,vN

p (w1:N , uN , vN |�, fl, ÷) =
ÿ

uN ,vN

AN (uN , vN ).

In turn, the terms of the filter AN (uN , vN ) can be computed by forward filtering. Nevertheless, because N

needs to be large, such that our approximate observation representation holds, naive filtering with algorithm 8.1
is impractical. Additionally, even if we were able to perform the filtering recursion in algorithm 8.1 for excessively
large N , directly training our model su�ers from the approximations induced by having a non-zero · and finite
N . Now we show how to eliminate such approximations altogether and derive a tractable version of the filtering
algorithm that carries over the limit N æ Œ.

Limit · æ 0+

As all of our propagators depend continuously on · , we can formally apply the · æ 0+ limit. Specifically, note 2.18
implies that

exp
1

·

2 G
2

æ 1, exp (·G) æ 1, exp
33

Tmax ≠ Tmin
N

≠ ·

4
G

4
æ �.
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Here, 1 is the identity matrix of size three. In this limit, we can safely replace our model with the limiting one

u1 ≥ Categorical
G,S,T

(fl),
v1|u1 ≥ Categorical

G,S,T
(fiu1) ,

un|vn≠1 ≥ Categorical
G,S,T

!
1vn≠1

"
, n = 2 : N

vn|un ≥ Categorical
G,S,T

(fiun
) , n = 2 : N

wn|un, vn ≥ Bernoulli (—unævn
) , n = 1 : N

thereby relaxing any approximation mediated by · .

Marginal likelihood

Having relaxed the dependency of the model on · , we now show how to apply forward filtering, i.e., algorithm 8.1.
To make our calculations more transparent, we adopt the super-state formalism over super-state ›n = (un, vn)
of note 8.17 and show how to recursively compute the forward terms of the filter which, in this case, read
An(un, vn) = An(›n). Further, to maintain the notation to a minimum, we follow note 8.5 and gather our
forward terms in row arrays

An =
#
An(‰1) An(‰2) An(‰3) An(‰4) An(‰5) An(‰6) An(‰7) An(‰8) An(‰9)

$
.

With this convention, the computation of the (marginal) likelihood, L, reduces to

L = AN �, � = ‡ ¢ ‡, ‡ =

S

U
1
1
1

T

V

where, to be clear, � is simply a row vector populated by ones.

Note 8.18: Vectorization of r and P

According to note 8.17, the model in section 8.7.7, leads to the tabulations

r =
Ë

flGfiGæG flGfiGæS flGfiGæT flSfiSæG flSfiSæS flSfiSæT flT fiT æG flT fiT æS flT fiT æT

È
,

P =

S

WWWWWWU

fiGæG fiGæS fiGæT 0 0 0 0 0 0
0 0 0 fiSæG fiSæS fiSæT 0 0 0
0 0 0 0 0 0 fiT æG fiT æS fiT æT

fiGæG fiGæS fiGæT 0 0 0 0 0 0
0 0 0 fiSæG fiSæS fiSæT 0 0 0
0 0 0 0 0 0 fiT æG fiT æS fiT æT

fiGæG fiGæS fiGæT 0 0 0 0 0 0
0 0 0 fiSæG fiSæS fiSæT 0 0 0
0 0 0 0 0 0 fiT æG fiT æS fiT æT

T

XXXXXXV
.

Adopting array operations, both are vectorized as

r =
!
fl ¢ ‡t

"
§

1
at

G�BG + at

S�BS + at

T �BT

2
,

P =
!
‡ ¢ I ¢ ‡t

"
§

1
At

G�BG + At

S�BS + At

T �BT

2

where ¢, § denote the Kronecker and Hadamard product, respectively, and the auxiliary arrays are

aG =

C1
0
0

D
, AG =

C1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

D
, BG =

C1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

D
,

aS =

C0
1
0

D
, AS =

C0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

D
, BS =

C0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

D
,
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aT =

C0
0
1

D
, AT =

C0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

D
, BT =

C0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

D
.

From eq. (!8.9), we see that the filtering updates follow the recursion

An(›n) =
ÿ

›n≠1

Bernoulli(wn; —›n
)P›n≠1æ›n

An≠1(›n≠1), n = 2 : N

which we can vectorize as

An = An≠1P wn
, n = 2 : N.

Note 8.19: Vectorization of P 0 and P 1

The matrices, P 0 and P 1, required in the filtering updates are tabulated in

P 0 =

S

WWWWWWWWWWU

fiGæG fiGæS fiGæT 0 0 0 0 0 0
0 0 0

’0fiSæG

fiSæS fiSæT 0 0 0
0 0 0 0 0 0 fiT æG fiT æS fiT æT

fiGæG fiGæS fiGæT 0 0 0 0 0 0
0 0 0

’0fiSæG

fiSæS fiSæT 0 0 0
0 0 0 0 0 0 fiT æG fiT æS fiT æT

fiGæG fiGæS fiGæT 0 0 0 0 0 0
0 0 0

’0fiSæG

fiSæS fiSæT 0 0 0
0 0 0 0 0 0 fiT æG fiT æS fiT æT

T

XXXXXXXXXXV

,

P 1 =

S

WWWWWWWWWWU

0 0 0 0 0 0 0 0 0
0 0 0

’1fiSæG

0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0

’1fiSæG

0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0

’1fiSæG

0 0 0 0 0
0 0 0 0 0 0 0 0 0

T

XXXXXXXXXXV

with ’0 = 1 ≠ ÷ and ’1 = ÷. Similar to P , these are vectorized by

P 0 =
!
‡ ¢ I ¢ ‡t

"
§

1
At

G�0BG + At

S�0BS + At

T �0BT

2
,

P 1 =
!
‡ ¢ I ¢ ‡t

"
§

1
At

G�1BG + At

S�1BS + At

T �1BT

2
.

In P 0 and P 1, we use �0 and �1 to discriminate between detection-less and detection-full pseudo-propagators

�0 = Z0 § �, �1 = Z1 § �

where with Z0 and Z1, termed “masks”, we encode detection-less and detection-full transitions

Z0 =

C 1 1 1
’0 1 1
1 1 1

D
, Z1 =

C 0 0 0
’1 0 0
0 0 0

D
.

As Z0 and Z1 encode our observation rules, i.e., encode time windows with either 0 or 1 detections, the pseudo-
propagators are related by � = �0 + �1. Additionally, because photons are emitted only when our system jumps
across constitutive states, the diagonal entires in Z0 are all one. By contrast, the diagonal entries in Z1 are all
zero.

256



Finally, according to eq. (!8.10), the filter is initialized with A1(›1) = Bernoulli(w1; —›1)r›1 which, in vectorized
form reads

A1 =
!
fl ¢ ‡t

"
§

1
at

G
�w1BG + at

S
�w1BS + at

T
�w1BT

2
.

Note 8.20: Vectorization

With the aid of two operators

L (C) = (flC) ¢ ‡t
, D (C) = at

GCBG + at

SCBS + at

T CBT

defined over the 3 ◊ 3 matrices C; the initial forward term takes a much simpler form

A1 = L (I) § D (�w1 ) .

By induction, we can now show that the forward variables, A1:N , satisfy an important relationship

An = L

!
I�w1 · · · �wn≠1

"
§ D (�wn

) , n = 1 : N.

Accordingly, the (marginal) likelihood is given by

L =
#
L

!
�w1 · · · �wN≠1

"
§ D (�wN

)
$

� = L
!
�w1 · · · �wN≠1

"
[D (�wN

)]t = fl �w1 · · · �wN
‡.

Limit N æ Œ

According to note 8.16, the product of the pseudo-propagators in our likelihood takes the form

�w1 · · · �wN
=

windows
1:N1≠1˙ ˝¸ ˚

�0 · · · �0 �1

windows
N1+1:N2≠1˙ ˝¸ ˚
�0 · · · �0 �1�0 · · · · · · �0�1

windows
NK+1:N˙ ˝¸ ˚

�0 · · · �0

= �N1≠1
0 �1�N2≠N1≠1

0 �1 · · · · · · �NK≠NK≠1≠1
0 �1�N≠NK

0 .

Note 8.21: Asymptotics

Considering the limit N æ Œ, from eq. (8.43), we see

� = I + Tmax ≠ Tmin
N

G + O
1 1

N2

2
,

which we may also use to approximate the pseudo-propagators. Specifically, as �0 = � § Z0 and �1 = � § Z1,
we readily derive

�0 = I + Tmax ≠ Tmin
N

G0 + O
1 1

N2

2
= exp

1
Tmax ≠ Tmin

N
G0

2
+ O

1 1
N2

2
,

�1 = Tmax ≠ Tmin
N

G1 + O
1 1

N2

2

where G0 = G § Z0 and G1 = G § Z1.
Additionally, according to the definition of Nk in note 8.16, we have

Nk

Tmax ≠ Tmin
N

= Tmax ≠ Tmin
N

+ O
1 1

N2

2
, k = 1 : K.

Putting everything together, we obtain an asymptotic expression of our likelihood

L =
3

Tmax ≠ Tmin
N

4K

¸ + O
3 1

NK+1

4
. (8.44)
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where ¸ is independent of N . Specifically, ¸ is given by

¸ = fl exp (g0G0)G1exp (g1G0) G1 · · · G1exp (gK≠1G0) G1exp (gKG0) ‡. (8.45)

As we can see, ¸ depends only on �, fl, ÷ and the successive time lags

g0 = T1 ≠ Tmin, g1 = T2 ≠ T1, · · · gK≠1 = TK ≠ TK≠1, gK = Tmax ≠ TK .

8.7.8 Bayesian considerations

From eq. (8.44), it becomes clear that the unknown parameters in our formulation enter the model’s likelihood
in a complicated way rendering it pointless to seek training through the Baum-Welch method of section 8.3.3
simply because closed form expressions do not follow from the derivatives in the M-step. Similarly, as conjugate
priors are unavailable, Bayesian training like those in section 8.4.1 is also not possible.

A viable training strategy, however, is through a Metropolis-Hastings MCMC scheme where, under non-
conjugate prior assignments, proposals are drawn and subsequently accepted or rejected according to the (marginal)
posterior. As this strategy is quite general, here we consider a wider problem, where the unknown parameters may
include not only entries of the transition rate matrix �, but also initial probabilities fl and observation parameter
÷.

For clarity, we gather the unknown parameters in ◊ and, to stress their dependence, we denote with ¸ (◊) the
product in eq. (8.45). With this formalism, our priors, which need to be specified, are encoded in p(◊) and our
likelihood is given, only asymptotically, by

p(w1:N |◊) =
3

Tmax ≠ Tmin
N

4K

¸ (◊) + O
3 1

NK+1

4
.

As in section 5.2.1, using an appropriate Metropolis-Hastings proposal q(◊prop|◊old), we arrive at the acceptance
ratio, eq. (5.8), of the form

AN

1
◊prop|◊old

2
= p (w1:N |◊prop)

p

1
w1:N |◊old

2 p (◊prop)
p

1
◊old

2
q

1
◊old|◊prop

2

q

1
◊prop|◊old

2 .

For any finite choice of N , this ratio is intractable. However, the limiting case N æ Œ leads to

AŒ

1
◊prop|◊old

2
= ¸ (◊prop)

¸

1
◊old

2 p (◊prop)
p

1
◊old

2
q

1
◊old|◊prop

2

q

1
◊prop|◊old

2

which we can readily evaluate numerically.

Example 8.6: Bayesian fluorescence spectroscopy

In the most general case, the unknowns in a typical problem of interest in fluorescence spectroscopy may include:
all transition rates ⁄GæS , ⁄SæG, ⁄SæT , ⁄T æG, all initial probabilities flG, flS , flT , as well as ÷. Convenient prior
choices then include

⁄GæS ≥ Gamma
1

2,
⁄ref

2

2
, ⁄SæG ≥ Gamma

1
2,

⁄ref
2

2
,

⁄SæT ≥ Gamma
1

2,
⁄ref

2

2
, ⁄T æG ≥ Gamma

1
2,

⁄ref
2

2
,

fl ≥ Dirichlet3

11
3 ,

1
3 ,

1
3

2
, ÷ ≥ Beta (1, 1) .

In these priors, the hyperparameters may be adjusted to incorporate prior confidence on certain values and ⁄ref
can be used to set a priori appropriate timescales.
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For numerical stability, it is preferable to use unitless priors

⁄̃GæS ≥ Gamma
1

2,
1
2

2
, ⁄̃SæG ≥ Gamma

1
2,

1
2

2

⁄̃SæT ≥ Gamma
1

2,
1
2

2
, ⁄̃T æG ≥ Gamma

1
2,

1
2

2

and implement the timescale through eq. (8.45) cast in the form

¸ = fl exp
!
g̃0G̃0

"
G̃1exp

!
g̃1G̃0

"
G̃1 · · · G̃1exp

!
g̃K≠1G̃0

"
G̃1exp

!
g̃KG̃0

"
‡.

with g̃k = gk⁄ref and where G̃ is the coinciding G constructed from �̃. Numerical stability can be further increased
if the fastest timescale is separated and evaluated analytically. In particular, if ⁄̃fast denotes the fastest rate, G̃0
can be replaced by �̃0 ≠ ⁄̃fast1. This way, ¸ results in

¸ = e
≠⁄̃fast⁄ref (Tmax≠Tmin)fl exp

!
g̃0�̃0

"
G̃1exp

!
g̃1�̃0

"
G̃1 · · · G̃1exp

!
g̃K≠1�̃0

"
G̃1exp

!
g̃K�̃0

"
‡.

8.8 Exercise problems

Exercise 8.1: EM for Poisson HMM

Adapt the Baum-Welch algorithm to train a HMM with Poisson emissions. For concreteness, consider the model

s1|fl ≥ Categorical
‡1:M (fl) ,

sn|sn≠1, � ≥ Categorical
‡1:M (fi‡m

) , n = 2 : N

wn|sn, „ ≥ Poisson („sn
) , n = 1 : N.

Compare your parameters fl, � and „ estimated with Baum-Welch with the ground truth you used to generate
your synthetic data.

Exercise 8.2: Implementing Viterbi

Generate observations w1:N using ancestral sampling for a simple HMM with two states. Assume known kinetic
and emission parameters. Implement the Viterbi algorithm, algorithm 8.3, to find the sequence s

˘

1:N . Compare
your s

˘

1:N to ground truth.

Exercise 8.3: Bayesian model for Poisson HMM

Consider the same model as in exercise 8.1 and provide a Bayesian formulation that estimates all unknown model
parameters. Make your own choices for the priors and briefly justify your choices. Histogram your MCMC samples
and indicate the ground truth.

Exercise 8.4: HMMs with common parameters

Consider a total of Q independent HMMs whose dynamics and observations are influenced by the same fl, �, „.
This scenario is typical of experiments where we try to estimate fl, �, „ from a number of short traces. Here we
need to consider a joint likelihood over all traces and apply a common prior over the parameters. For each trace,
we have

s
q

1|fl ≥ Categorical
‡1:M (fl) , q = 1 : Q

s
q

n|sq

n≠1, � ≥ Categorical
‡1:M

1
fi

s
q

n≠1

2
, n = 2 : N, q = 1 : Q
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w
q

n|sq

n, „ ≥ G„
s

q

n

, n = 1 : N, k = 1 : Q.

1. Adapt the Baum-Welch algorithm to train the resulting model.
2. Develop a Bayesian model that estimates all model parameters, represent your model graphically, and describe

a MCMC sampling scheme.

Exercise 8.5: A sticky HMM

Here we provide a Bayesian model that estimates all dynamic parameters for a HMM with two states and
Normal emissions. We assume that the emission parameters are known and our only goal is to estimate dynamical
parameters.

Start by generating synthetic data and assume that your escape probabilities coincide with escape rates of the
same order of magnitude for each state.

Next perform inference using a sticky HMM. As you implement the sticky HMM, consider three cases: one
where the hyperparameters of note 8.12 are tuned to approximately match the dwell time of each state in your
synthetic data; and two more cases where the hyperparameters under- and overestimate the dwell by an order of
magnitude.

For all three cases, histogram your MCMC samples for your kinetic parameters and indicate the ground truth
in your histogram.

Exercise 8.6: The iHMM

Here we consider the iHMM of section 8.6.
1. Generate synthetic data with M = 3 states using the usual ancestral sampling scheme of a HMM model.

Assume a Normal emission model with, for simplicity, the same variance in each state.
2. Implement the Gibbs sampler proposed in section 8.6 to sample kinetic parameters and mean levels of the

emission distributions.
3. Repeat the above steps for M = 10 and M = 50.
4. Use your MCMC samples and histogram the fraction of time spent in each state. Compare your results to

the ground truth and the mean expected time derived from your prior.

Project 8.1: De-drifting a trace in HMM analysis

In experimental techniques, such as force spectroscopy, the apparatus collecting data drifts over time giving rise
to an apparently low frequency undulation added on top of the signal. In force spectroscopy, the slow drift of an
optical trap holding a micron-sized bead corrupts our assessment of its position used as a microscopic measure
of force impinged upon the bead. Often, this force can be imparted by a molecule undergoing transitions in a
discrete state-space through a dual optical trap setup (e.g., Comstock et al. Ultrahigh-resolution optical trap with
single-fluorophore sensitivity. Nat. Meth. 8:335, 2011).

To learn properties of a system free from the corruption introduced by drift, we consider a HMM with two
states in the presence of drift, d(·), captured by the following generative model

d(·) ≥GaussianP(µdrift(·), Cdrift(·, ·)),
s1|fl ≥Categorical

‡1:2 (fl),
sn+1|sn, � ≥Categorical

‡1:2 (fi‡m
),

wn|sn, d(·) ≥Normal (µsn
+ d(tn), v) .

1. Simulate about a 103 point trajectory using the familiar squared exponential Cdrift(·, ·) with prefactor equal
to 2 and length scale equal to 500 times the time step size. Set M = 2, µdrift = 0, fi‡1æ‡1 = fi‡2æ‡2 = 0.9,
fi‡1æ‡2 = fi‡2æ‡1 = 0.1, µ‡1 =-5, µ‡2 =5, v = 1 (in rescaled “unitless” units). That is, drift should occur
on a slow timescale as compared to other time scales of the problem.

2. Place appropriate priors and implement a MCMC sampling scheme to estimate d(·), � under known v. As
a prior on d(·) use a GaussianP with a squared exponential Cdrift(·, ·) whose parameters are close to what
was used to generate the data.
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3. Plot various samples of your d(·) and compare to ground truth. Also, histogram your values for � and
compare with ground truth.

Project 8.2: A Bayesian HMM for raw FRET measurements

In fluorescent experiments relying on Förster resonance energy transfer (FRET) measurements, we typically obtain
two scalar measurements, w

D

n and w
A

n , at each time level tn. These are the number of photons emitted by
a fluorescent label (called a fluorophore) designated as donor and the number of photons emitted by a second
fluorophore designated as acceptor , respectively.

The donor and acceptor can be located on two ends of a molecule. When the donor and acceptor move close
to one another, as a molecule collapses on itself or folds, energy can be transferred from a donor (typically directly
excited by a laser light) to an acceptor. As such, the origin of the photons (whether higher energy photons from
the donor or lower energy photons from the acceptor) report back on the conformational state of a molecule.

As individual photons are emitted by the fluorophores independently, the raw measurements are described by

w
D

n |sn ≥ Poisson
!
µ

D

sn

"
, w

A

n |sn ≥ Poisson
!
µ

A

sn

"
, n = 1 : N

where sn is the conformational state of the molecule attached to the two fluorophores and the state dependent
parameters µ

D

‡1 , · · · , µ
D

‡M
and µ

A

‡1 , · · · , µ
A

‡M
are the corresponding average photon emissions per unit time.

1. Set up a Bayesian HMM for the analysis of measurements w
D

1:N and w
A

1:N , generated from synthetic data,
from the donor and acceptor channels. Typical values are N = 1000, M = 3 and µ

D

‡m
, µ

A

‡m
in the range

100–1000 photons/s.
2. Describe an MCMC sampling scheme for the model posterior in part 1.
3. Implement the MCMC sampling scheme of step 2.
4. Verify, using synthetic data, that your implementation of step 3 generates samples with the correct statistics.
In FRET experiments, a common issue is the crossover of photons into the wrong photon detector due to

spectral overlap. Crossover is generally given as a matrix of probabilities

C =
5

cDæD cDæA

cAæD cAæA

6

where, for example, cDæA is the probability of a donor photon detected in the acceptor channel. Due to conser-
vation, these probabilities satisfy cDæD + cDæA = 1 and cAæD + cAæA = 1. Typical values are cDæA, cAæD in
the range 5–15%.

5. Show that with crossover, the measurements are described by

w
D

n |sn ≥ Poisson
!
cDæDµ

D

sn
+ cAæDµ

A

sn

"
,

w
A

n |sn ≥ Poisson
!
cDæAµ

D

sn
+ cAæAµ

A

sn

"
.

6. Modify the Bayesian model of step 1 to incorporate crossover, assuming known crossover probabilities, and
implement and verify your MCMC.

Project 8.3: A Bayesian HMM for FRET e�ciency measurements

In a FRET experiment like in project 8.2, most often w
D

n and w
A

n are combined into a single scalar quantity

‘n = w
A

n

w
A
n + w

D
n

which is termed the (apparent) FRET e�ciency. In this case, the observation model takes a simpler form

‘n|sn ≥ G„‡m

where „‡m
= (µD

‡m
, µ

A

‡m
). In general, the probability density G„ (‘) is analytically intractable. However, provided

all emission levels are high enough, we can safely use the approximations

Poisson
!
w

D; µ
D

"
¥ Gamma

!
w

D; µ
D

, 1
"

, Poisson
!
w

A; µ
A

"
¥ Gamma

!
w

A; µ
A

, 1
"

.
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1. Consider these approximations and derive an analytic formula for the resulting emission density G„(‘).
2. Set up a Bayesian HMM for the analysis of apparent FRET e�ciencies ‘1:N .
3. Describe an MCMC sampling scheme for the posterior of the model in step 2.
4. Implement the MCMC sampling scheme of step 3.
5. Verify, using synthetic data, that your implementation of step 4 generates samples with the correct statistics.

As in project 8.3, typical values are N = 1000, M = 3 and µ
D

‡m
, µ

A

‡m
in the range 100–1000 photons/s.
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